Transform networks for cooperative multi-agent deep reinforcement learning

被引:5
|
作者
Wang, Hongbin [1 ]
Xie, Xiaodong [1 ]
Zhou, Lianke [1 ]
机构
[1] Harbin Engn Univ, Coll Comp Sci & Technol, Harbin 150001, Peoples R China
关键词
Reinforcement Learning; Multi-agent; Value based;
D O I
10.1007/s10489-022-03924-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, the Multi-agent Deep Reinforcement Learning Algorithm has been developing rapidly, in which the value method-based algorithm plays an important role (such as Monotonic Value Function Factorisation (QMIX) and Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement learning (QTRAN)). In spite of the fact, the performance of current value-based multi-agent algorithm under complex scene still can be further improved. In value function-based model, a mixing network is usually used to mix the local action value of each agent to get joint action value when the partial observability will cause the problem of misalignment and unsatisfying mixing results. This paper proposes a multi-agent model called Transform Networks that transform the individual local action-value function gotten by agent network to individual global action-value function, which will avoid the problem of misalignment caused by partial observability when the individual action value is mixed, and the joint action value can represent the cooperative conditions of all agents well. Using the StarCraft Multi-Agent Challenge (SMAC) as the experimental platform, the comparison of the performance of algorithms on five different maps proved that the proposed method has better effect than the current most advanced baseline algorithms.
引用
收藏
页码:9261 / 9269
页数:9
相关论文
共 50 条
  • [1] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    [J]. Applied Intelligence, 2023, 53 : 9261 - 9269
  • [2] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    [J]. APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [3] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    [J]. Applied Intelligence, 2023, 53 : 13677 - 13722
  • [4] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] Cooperative Multi-Agent Deep Reinforcement Learning in Soccer Domains
    Ocana, Jim Martin Catacora
    Riccio, Francesco
    Capobianco, Roberto
    Nardi, Daniele
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1865 - 1867
  • [6] Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward
    Shao, Kun
    Zhu, Yuanheng
    Tang, Zhentao
    Zhao, Dongbin
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [7] Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles
    Kwon, Dohyun
    Kim, Joongheon
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [8] Deep Multi-Agent Reinforcement Learning Based Cooperative Edge Caching in Wireless Networks
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [9] Multi-agent Deep Reinforcement Learning for Non-Cooperative Power Control in Heterogeneous Networks
    Zhang, Lin
    Liang, Ying-Chang
    [J]. 2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [10] Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning
    Bacchiani, Giulio
    Molinari, Daniele
    Patander, Marco
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1547 - 1555