A review of cooperative multi-agent deep reinforcement learning

被引:88
|
作者
Oroojlooy, Afshin [1 ]
Hajinezhad, Davood [1 ]
机构
[1] SAS Inst Inc, Cary, NC 27513 USA
关键词
Reinforcement learning; Multi-agent systems; Cooperative learning; CONFLICT-BASED SEARCH; COMPREHENSIVE SURVEY; EVALUATION PLATFORM; LEVEL CONTROL; POLICY; CONVERGENCE; ALGORITHM; FRAMEWORK; DECISION; SYSTEMS;
D O I
10.1007/s10489-022-04105-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Reinforcement Learning has made significant progress in multi-agent systems in recent years. The aim of this review article is to provide an overview of recent approaches on Multi-Agent Reinforcement Learning (MARL) algorithms. Our classification of MARL approaches includes five categories for modeling and solving cooperative multi-agent reinforcement learning problems: (I) independent learners, (II) fully observable critics, (III) value function factorization, (IV) consensus, and (IV) learn to communicate. We first discuss each of these methods, their potential challenges, and how these challenges were mitigated in the relevant papers. Additionally, we make connections among different papers in each category if applicable. Next, we cover some new emerging research areas in MARL along with the relevant recent papers. In light of MARL's recent success in real-world applications, we have dedicated a section to reviewing these applications and articles. This survey also provides a list of available environments for MARL research. Finally, the paper is concluded with proposals on possible research directions.
引用
收藏
页码:13677 / 13722
页数:46
相关论文
共 50 条
  • [1] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    [J]. Applied Intelligence, 2023, 53 : 13677 - 13722
  • [2] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [3] Cooperative Multi-Agent Deep Reinforcement Learning in Soccer Domains
    Ocana, Jim Martin Catacora
    Riccio, Francesco
    Capobianco, Roberto
    Nardi, Daniele
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1865 - 1867
  • [4] Transform networks for cooperative multi-agent deep reinforcement learning
    Hongbin Wang
    Xiaodong Xie
    Lianke Zhou
    [J]. Applied Intelligence, 2023, 53 : 9261 - 9269
  • [5] Multi-Agent Deep Reinforcement Learning for Cooperative Connected Vehicles
    Kwon, Dohyun
    Kim, Joongheon
    [J]. 2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [6] Transform networks for cooperative multi-agent deep reinforcement learning
    Wang, Hongbin
    Xie, Xiaodong
    Zhou, Lianke
    [J]. APPLIED INTELLIGENCE, 2023, 53 (08) : 9261 - 9269
  • [7] Survey of Fully Cooperative Multi-Agent Deep Reinforcement Learning
    Zhao, Liyang
    Chang, Tianqing
    Chu, Kaixuan
    Guo, Libin
    Zhang, Lei
    [J]. Computer Engineering and Applications, 2023, 59 (12) : 14 - 27
  • [8] Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward
    Shao, Kun
    Zhu, Yuanheng
    Tang, Zhentao
    Zhao, Dongbin
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Conditionally Optimistic Exploration for Cooperative Deep Multi-Agent Reinforcement Learning
    Zhao, Xutong
    Pan, Yangchen
    Xiao, Chenjun
    Chandar, Sarath
    Rajendran, Janarthanan
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2529 - 2540
  • [10] Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning
    Bacchiani, Giulio
    Molinari, Daniele
    Patander, Marco
    [J]. AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1547 - 1555