Nonnegative solutions of semilinear elliptic equations in half-spaces

被引:10
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
[2] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[3] Univ La Laguna, IUdEA Fis Atom Mol & Foton, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
来源
关键词
Nonnegative solutions; Half-space; Moving planes; Unique continuation; Eigenvalue problems; MAXIMUM PRINCIPLE; UNBOUNDED-DOMAINS; UNIQUENESS; OPERATORS; SYMMETRY;
D O I
10.1016/j.matpur.2016.03.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the semilinear elliptic problem {-Delta u = f (u) in R-+(N) (0.1) u = 0 on partial derivative R-+(N) where the nonlinearity f is assumed to be C-1 and globally Lipschitz with f (0) < 0, and R-+(N) = {x is an element of R-N : x(N) > 0} stands for the half-space. Denoting by u(0) the unique solution of the one-dimensional problem -u '' = f(u) with u(0) = u '(0) = 0, we show that nonnegative solutions u of (0.1) which verify u(x) >= u(0)(x(N)) in R-+(N) either are positive and monotone in the x(N) direction or coincide with u(0). As a particular instance, when f (t) = t - 1, we prove that the unique nonnegative (not necessarily bounded) solution of (0.1) is u(x) = 1- cos x(N). This solves in a strengthened form a conjecture posed by Berestycki, Caffarelli and Nirenberg in 1997. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:866 / 876
页数:11
相关论文
共 50 条