On symmetry of nonnegative solutions of elliptic equations

被引:6
|
作者
Polacik, P. [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
POSITIVE SOLUTIONS; MAXIMUM PRINCIPLE; MOVING PLANES;
D O I
10.1016/j.anihpc.2011.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Dirichlet problem for a class of fully nonlinear elliptic equations on a bounded domain Omega. We assume that Omega is symmetric about a hyperplane H and convex in the direction perpendicular to H. By a well-known result of Gidas, Ni and Nirenberg and its generalizations, all positive solutions are reflectionally symmetric about H and decreasing away from the hyperplane in the direction orthogonal to H. For nonnegative solutions, this result is not always true. We show that, nonetheless, the symmetry part of the result remains valid for nonnegative solutions: any nonnegative solution u is symmetric about H. Moreover, we prove that if u not equivalent to 0, then the nodal set of a divides the domain Omega into a finite number of reflectionally symmetric subdomains in which a has the usual Gidas Ni Nirenberg symmetry and monotonicity properties. We also show several examples of nonnegative solutions with a nonempty interior nodal set. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] Symmetry of Nonnegative Solutions of Elliptic Equations via a Result of Serrin
    Polacik, P.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (04) : 657 - 669
  • [2] Positivity and symmetry of nonnegative solutions of semilinear elliptic equations on planar domains
    Polacik, P.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (10) : 4458 - 4474
  • [3] Symmetry properties for nonnegative solutions of non-uniformly elliptic equations in the hyperbolic space
    do O, Joao Marcos
    da Costa, Ricardo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (02) : 1753 - 1771
  • [4] Symmetry of the solutions of semilinear elliptic equations
    Dolbeault, J
    Felmer, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (08): : 677 - 682
  • [5] NONNEGATIVE SOLUTIONS FOR WEAKLY NONLINEAR ELLIPTIC-EQUATIONS
    ALLEGRETTO, W
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (01): : 71 - 83
  • [6] Nonnegative solutions of semilinear elliptic equations in half-spaces
    Cortazar, Carmen
    Elgueta, Manuel
    Garcia-Melian, Jorge
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (05): : 866 - 876
  • [7] Asymptotic symmetry of singular solutions of semilinear elliptic equations
    Lin, Chang-Shou
    Prajapat, Jyotshana V.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (09) : 2534 - 2550
  • [8] Symmetry of large solutions of nonlinear elliptic equations in a ball
    Porretta, Alessio
    Veron, Laurent
    JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (02) : 581 - 591
  • [9] Symmetry of large solutions for semilinear elliptic equations in a ball
    Cortazar, Carmen
    Elgueta, Manuel
    Garcia-Melian, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 121 : 286 - 297
  • [10] Symmetry properties of solutions of semilinear elliptic equations in the plane
    Porretta, A
    Véron, L
    MANUSCRIPTA MATHEMATICA, 2004, 115 (02) : 239 - 258