Nonnegative solutions of semilinear elliptic equations in half-spaces

被引:10
|
作者
Cortazar, Carmen [1 ]
Elgueta, Manuel [1 ]
Garcia-Melian, Jorge [2 ,3 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Fac Matemat, Casilla 306,Correo 22, Santiago, Chile
[2] Univ La Laguna, Dept Anal Matemat, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[3] Univ La Laguna, IUdEA Fis Atom Mol & Foton, C Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
来源
关键词
Nonnegative solutions; Half-space; Moving planes; Unique continuation; Eigenvalue problems; MAXIMUM PRINCIPLE; UNBOUNDED-DOMAINS; UNIQUENESS; OPERATORS; SYMMETRY;
D O I
10.1016/j.matpur.2016.03.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the semilinear elliptic problem {-Delta u = f (u) in R-+(N) (0.1) u = 0 on partial derivative R-+(N) where the nonlinearity f is assumed to be C-1 and globally Lipschitz with f (0) < 0, and R-+(N) = {x is an element of R-N : x(N) > 0} stands for the half-space. Denoting by u(0) the unique solution of the one-dimensional problem -u '' = f(u) with u(0) = u '(0) = 0, we show that nonnegative solutions u of (0.1) which verify u(x) >= u(0)(x(N)) in R-+(N) either are positive and monotone in the x(N) direction or coincide with u(0). As a particular instance, when f (t) = t - 1, we prove that the unique nonnegative (not necessarily bounded) solution of (0.1) is u(x) = 1- cos x(N). This solves in a strengthened form a conjecture posed by Berestycki, Caffarelli and Nirenberg in 1997. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:866 / 876
页数:11
相关论文
共 50 条
  • [31] Solutions of Semilinear Elliptic Equations in Tubes
    Frank Pacard
    Filomena Pacella
    Berardino Sciunzi
    Journal of Geometric Analysis, 2014, 24 : 445 - 471
  • [32] Solutions of Semilinear Elliptic Equations in Tubes
    Pacard, Frank
    Pacella, Filomena
    Sciunzi, Berardino
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 445 - 471
  • [33] ENTIRE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS
    Gladkov, Alexander
    Slepchenkov, Nickolai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [34] HJB Equations and Stochastic Control on Half-Spaces of Hilbert Spaces
    Calvia, Alessandro
    Cappa, Gianluca
    Gozzi, Fausto
    Priola, Enrico
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 710 - 744
  • [35] Existence of solutions in weighted Sobolev spaces for some degenerate semilinear elliptic equations
    Cavalheiro, AC
    APPLIED MATHEMATICS LETTERS, 2004, 17 (04) : 387 - 391
  • [36] HJB Equations and Stochastic Control on Half-Spaces of Hilbert Spaces
    Alessandro Calvia
    Gianluca Cappa
    Fausto Gozzi
    Enrico Priola
    Journal of Optimization Theory and Applications, 2023, 198 : 710 - 744
  • [37] Concentration of solutions for the Yamabe problem on half-spaces
    Cao, Daomin
    Peng, Shuangjie
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 73 - 99
  • [38] ASYMPTOTIC-BEHAVIOR OF SOLUTIONS TO SEMILINEAR ELLIPTIC-EQUATIONS ON THE HALF-CYLINDER
    FLAVIN, JN
    KNOPS, RJ
    PAYNE, LE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (03): : 405 - 421
  • [40] Boundary singularities of solutions of semilinear elliptic equations in the half-space with a Hardy potential
    Catherine Bandle
    Moshe Marcus
    Vitaly Moroz
    Israel Journal of Mathematics, 2017, 222 : 487 - 514