Nonexistence of nonnegative entire solutions of semilinear elliptic systems

被引:0
|
作者
Gladkov, Alexander [1 ,2 ]
Sergeenko, Sergey [3 ]
机构
[1] Belarusian State Univ, Dept Mech & Math, Minsk, BELARUS
[2] RUDN Univ, Peoples Friendship Univ Russia, Moscow, Russia
[3] Vitebsk State Univ, Dept Math & Informat Technol, Vitebsk, BELARUS
关键词
Semilinear elliptic system; entire solutions; nonexistence; POSITIVE ENTIRE SOLUTIONS; RADIAL SOLUTIONS; EXISTENCE; THEOREM;
D O I
10.1080/17476933.2020.1816983
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the second-order semilinear elliptic system Delta u = p(x)v(alpha), Delta v = q(x)u(beta), where x is an element of R-N, N >= 3, alpha and beta are positive constants, p and q are nonnegative continuous functions. We prove that nontrivial nonnegative entire solutions fail to exist if the functions p and q are of slow decay.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 50 条