Reversible increase of photocurrents in excimer laser-crystallized silicon solar cells

被引:5
|
作者
Mudugamuwa, Nilushan K. [1 ]
Adikaari, A. A. D. T. [1 ]
Dissanayake, D. M. N. M. [1 ]
Stolojan, V. [1 ]
Silva, S. R. P. [1 ]
机构
[1] Univ Surrey, Fac Engn & Phys Sci, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
excimer laser crystallization; amorphous silicon; current density; solar cells;
D O I
10.1016/j.solmat.2008.05.012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Excimer laser-crystallized silicon solar cells fabricated show a steady increment of the current densities with exposure to simulated sunlight, over a 30 min period. The current density of the amorphous silicon cell under identical conditions remains steady, with no significant change. The process was observed to be reversible upon cooling, and the performance increase is attributed to the energy barrier introduced by the enhanced bandgap of a nanocrystalline silicon middle layer, created as a result of the crystallization. It is suggested that the thermal energy due to prolonged illumination allows carriers to cross the barrier increasing output currents. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1378 / 1381
页数:4
相关论文
共 50 条
  • [21] Extreme electronic bandgap modification in laser-crystallized silicon optical fibres
    Noel Healy
    Sakellaris Mailis
    Nadezhda M. Bulgakova
    Pier J. A. Sazio
    Todd D. Day
    Justin R. Sparks
    Hiu Y. Cheng
    John V. Badding
    Anna C. Peacock
    [J]. Nature Materials, 2014, 13 : 1122 - 1127
  • [22] Electronic transport in P-doped laser-crystallized polycrystalline silicon
    Maydell, KV
    Brehme, S
    Nickel, NH
    Fuhs, W
    [J]. THIN SOLID FILMS, 2005, 487 (1-2) : 93 - 96
  • [23] NMOS SILICON GATE TRANSISTORS IN LARGE-AREA LASER-CRYSTALLIZED SILICON LAYERS
    BOSCH, MA
    HERBST, D
    GROGAN, JK
    LEMONS, RA
    TENNANT, DM
    TEWKSBURY, SK
    [J]. IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1984, 131 (04): : 121 - 124
  • [24] Photonic Devices in Low-Temperature Laser-Crystallized Deposited Silicon
    Preston, Kyle
    Poitras, Carl B.
    Thompson, Michael O.
    Lipson, Michal
    [J]. 2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [25] Impact of substrate composition on the morphology and conductivity of laser-crystallized silicon films
    Matthew R. Semler
    Justin M. Hoey
    Srinivasan Guruvenket
    Orven F. Swenson
    Erik K. Hobbie
    [J]. Applied Physics A, 2015, 120 : 1545 - 1553
  • [26] Stability of continuous-wave laser-crystallized epilike silicon transistors
    Lin, Yu-Ting
    Chen, Chih
    Shieh, Jia-Min
    Pan, Ci-Ling
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (07)
  • [27] Enhanced Absorption in Laser-Crystallized Silicon Thin Films on Textured Glass
    Pakhuruddin, Mohd Zamir
    Huang, Jialiang
    Dore, Jonathan
    Varlamov, Sergey
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2016, 6 (04): : 852 - 859
  • [28] RAMAN-MICROPROBE STUDY OF STRESS AND CRYSTAL ORIENTATION IN LASER-CRYSTALLIZED SILICON
    KOLB, G
    SALBERT, T
    ABSTREITER, G
    [J]. JOURNAL OF APPLIED PHYSICS, 1991, 69 (05) : 3387 - 3389
  • [29] Nanotechnology enhanced solar cells prepared on laser-crystallized polycrystalline thin films (< 10 μm)
    Jia, Guobin
    Andrae, Gudrun
    Gawlik, Annett
    Schonherr, Sven
    Plentz, Jonathan
    Eisenhawer, Bjorn
    Pliewischkies, Torsten
    Dellith, Andrea
    Falk, Fritz
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 126 : 62 - 67
  • [30] Crack Propagation in Nonalkaline Glass Activated by Laser-Crystallized Polycrystalline Silicon Films
    Hara, Akito
    Goto, Keisuke
    Kitahara, Kuninori
    [J]. 2014 21ST INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES (AM-FPD), 2014, : 265 - +