A MULTISCALE FINITE ELEMENT METHOD FOR OSCILLATING NEUMANN PROBLEM ON ROUGH DOMAIN

被引:4
|
作者
Ming, Pingbing [1 ]
Xu, Xianmin [2 ]
机构
[1] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Univ Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, LSEC,AMSS,NCMIS, 55 Zhong Guan Cun East Rd, Beijing 100190, Peoples R China
来源
MULTISCALE MODELING & SIMULATION | 2016年 / 14卷 / 04期
基金
中国国家自然科学基金;
关键词
multiscale finite element method; rough boundary; homogenization; NAVIER-STOKES SYSTEM; ELLIPTIC PROBLEMS; COMPLICATED DOMAINS; BOUNDARY; COEFFICIENTS; SURFACE; FLOW; CONVERGENCE; EQUATIONS; MODEL;
D O I
10.1137/15M1044709
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new multiscale finite element method for the Laplace equation with oscillating Neumann boundary conditions on rough boundaries. The key point is the introduction of a new boundary condition that incorporates both the microscopically geometrical and physical information of the rough boundary. Our approach applies to problems posed on a domain with a rough boundary as well as oscillating boundary conditions. We prove the method has a linear convergence rate in the energy norm with a weak resonance term for periodic roughness. Numerical results are reported for both periodic and nonperiodic roughness.
引用
收藏
页码:1276 / 1300
页数:25
相关论文
共 50 条
  • [1] A MULTISCALE FINITE ELEMENT METHOD FOR NEUMANN PROBLEMS IN POROUS MICROSTRUCTURES
    Brown, Donald L.
    Taralova, Vasilena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (05): : 1299 - 1326
  • [2] Solving the Pure Neumann Problem by a Finite Element Method
    M. I. Ivanov
    I. A. Kremer
    M. V. Urev
    Numerical Analysis and Applications, 2019, 12 : 359 - 371
  • [3] Solving the Pure Neumann Problem by a Finite Element Method
    Ivanov, M. I.
    Kremer, I. A.
    Urev, M. V.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2019, 12 (04) : 359 - 371
  • [4] A mixed multiscale finite element method for elliptic problems with oscillating coefficients
    Chen, ZM
    Hou, TY
    MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 541 - 576
  • [5] A Multiscale Finite Element Method for an Elliptic Distributed Optimal Control Problem with Rough Coefficients and Control Constraints
    Brenner, Susanne C.
    Garay, Jose C.
    Sung, Li-yeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)
  • [6] Solving the Pure Neumann Problem by a Mixed Finite Element Method
    M. I. Ivanov
    I. A. Kremer
    Yu. M. Laevsky
    Numerical Analysis and Applications, 2022, 15 : 316 - 330
  • [7] Solving the Pure Neumann Problem by a Mixed Finite Element Method
    Ivanov, M. I.
    Kremer, I. A.
    Laevsky, Yu. M.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2022, 15 (04) : 316 - 330
  • [8] Multiscale Finite Element Methods for an Elliptic Optimal Control Problem with Rough Coefficients
    Susanne C. Brenner
    José C. Garay
    Li-Yeng Sung
    Journal of Scientific Computing, 2022, 91
  • [9] Multiscale Finite Element Methods for an Elliptic Optimal Control Problem with Rough Coefficients
    Brenner, Susanne C.
    Garay, Jose C.
    Sung, Li-Yeng
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (03)
  • [10] Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients
    Hou, TY
    Wu, XH
    Cai, ZQ
    MATHEMATICS OF COMPUTATION, 1999, 68 (227) : 913 - 943