Agnostic Estimation for Misspecified Phase Retrieval Models

被引:0
|
作者
Neykov, Matey [1 ]
Wang, Zhaoran [2 ]
Liu, Han [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat Data Sci, Pittsburgh, PA 15213 USA
[2] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Dept Stat, Evanston, IL 60208 USA
关键词
REGRESSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of noisy high-dimensional phase retrieval is to estimate an 8-sparse parameter beta* is an element of R-d from n realizations of the model Y = (X-inverted perpendicular beta*)(2) + epsilon. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f (X-inverted perpendicular beta*, epsilon) with unknown f and Cov(Y, (X-inverted perpendicular beta*)(2)) > 0. For example, MPR encompasses Y = h(vertical bar X-inverted perpendicular beta*vertical bar) + epsilon with increasing h as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of beta*. Furthermore, we prove that our procedure is minimax optimal over the class of MPR models. Interestingly, our minimax analysis characterizes the statistical price of misspecifying the link function in phase retrieval models. Our theory is backed up by thorough numerical results.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [1] Agnostic Estimation for Misspecified Phase Retrieval Models
    Neykov, Matey
    Wang, Zhaoran
    Liu, Han
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [2] Agnostic estimation for misspecified phase retrieval models
    Neykov, Matey
    Wang, Zhaoran
    Liu, Han
    Journal of Machine Learning Research, 2020, 21 : 1 - 39
  • [3] Misspecified Phase Retrieval with Generative Priors
    Liu, Zhaoqiang
    Wang, Xinshao
    Liu, Jiulong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [4] The estimation of misspecified long memory models
    Robinson, Peter M.
    JOURNAL OF ECONOMETRICS, 2014, 178 : 225 - 230
  • [5] Agnostic Phase Estimation
    Song, Xingrui
    Salvati, Flavio
    Gaikwad, Chandrashekhar
    Halpern, Nicole Yunger
    Arvidsson-Shukur, David R. M.
    Murch, Kater
    PHYSICAL REVIEW LETTERS, 2024, 132 (26)
  • [6] Misspecified nonconvex statistical optimization for sparse phase retrieval
    Yang, Zhuoran
    Yang, Lin F.
    Fang, Ethan X.
    Zhao, Tuo
    Wang, Zhaoran
    Neykov, Matey
    MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 545 - 571
  • [7] Misspecified nonconvex statistical optimization for sparse phase retrieval
    Zhuoran Yang
    Lin F. Yang
    Ethan X. Fang
    Tuo Zhao
    Zhaoran Wang
    Matey Neykov
    Mathematical Programming, 2019, 176 : 545 - 571
  • [8] Bayesian Estimation of the Discrepancy with Misspecified Parametric Models
    De Blasi, Pierpaolo
    Walker, Stephen G.
    BAYESIAN ANALYSIS, 2013, 8 (04): : 781 - 800
  • [9] Minimum φ-divergence estimation in misspecified multinomial models
    Jimenez-Gamero, M. D.
    Pino-Mejias, R.
    Alba-Fernandez, V.
    Moreno-Rebollo, J. L.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3365 - 3378
  • [10] MAXIMUM-LIKELIHOOD ESTIMATION OF MISSPECIFIED MODELS
    CHOW, GC
    ECONOMIC MODELLING, 1984, 1 (02) : 134 - 138