Misspecified nonconvex statistical optimization for sparse phase retrieval

被引:0
|
作者
Zhuoran Yang
Lin F. Yang
Ethan X. Fang
Tuo Zhao
Zhaoran Wang
Matey Neykov
机构
[1] Princeton University,Department of Operations Research and Financial Engineering
[2] Pennsylvania State University,Department of Statistics
[3] Pennsylvania State University,Department of Industrial and Manufacturing Engineering
[4] Georgia Institute of Technology,School of Industrial and Systems Engineering
[5] Georgia Institute of Technology,School of Computational Science and Engineering
[6] Northwestern University,Department of Industrial Engineering and Management Science
[7] Carnegie Mellon University,Department of Statistics
来源
Mathematical Programming | 2019年 / 176卷
关键词
94A12; 90C30; 90C90;
D O I
暂无
中图分类号
学科分类号
摘要
Existing nonconvex statistical optimization theory and methods crucially rely on the correct specification of the underlying “true” statistical models. To address this issue, we take a first step towards taming model misspecification by studying the high-dimensional sparse phase retrieval problem with misspecified link functions. In particular, we propose a simple variant of the thresholded Wirtinger flow algorithm that, given a proper initialization, linearly converges to an estimator with optimal statistical accuracy for a broad family of unknown link functions. We further provide extensive numerical experiments to support our theoretical findings.
引用
收藏
页码:545 / 571
页数:26
相关论文
共 50 条
  • [1] Misspecified nonconvex statistical optimization for sparse phase retrieval
    Yang, Zhuoran
    Yang, Lin F.
    Fang, Ethan X.
    Zhao, Tuo
    Wang, Zhaoran
    Neykov, Matey
    MATHEMATICAL PROGRAMMING, 2019, 176 (1-2) : 545 - 571
  • [2] THE SAMPLING COMPLEXITY ON NONCONVEX SPARSE PHASE RETRIEVAL PROBLEM
    Xia, Yu
    Zhou, Likai
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (04): : 607 - 626
  • [3] Scalable Incremental Nonconvex Optimization Approach for Phase Retrieval
    Li, Ji
    Cai, Lian-Feng
    Zhao, Hongkai
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [4] Scalable Incremental Nonconvex Optimization Approach for Phase Retrieval
    Ji Li
    Jian-Feng Cai
    Hongkai Zhao
    Journal of Scientific Computing, 2021, 87
  • [5] Misspecified Phase Retrieval with Generative Priors
    Liu, Zhaoqiang
    Wang, Xinshao
    Liu, Jiulong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [6] Asynchronous Schemes for Stochastic and Misspecified Potential Games and Nonconvex Optimization
    Lei, Jinlong
    Shanbhag, Uday, V
    OPERATIONS RESEARCH, 2020, 68 (06) : 1742 - 1766
  • [7] Agnostic Estimation for Misspecified Phase Retrieval Models
    Neykov, Matey
    Wang, Zhaoran
    Liu, Han
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [8] Agnostic Estimation for Misspecified Phase Retrieval Models
    Neykov, Matey
    Wang, Zhaoran
    Liu, Han
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21 : 1 - 39
  • [9] Agnostic estimation for misspecified phase retrieval models
    Neykov, Matey
    Wang, Zhaoran
    Liu, Han
    Journal of Machine Learning Research, 2020, 21 : 1 - 39
  • [10] DISTRIBUTED NONCONVEX OPTIMIZATION FOR SPARSE REPRESENTATION
    Sun, Ying
    Scutari, Gesualdo
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4044 - 4048