Agnostic Estimation for Misspecified Phase Retrieval Models

被引:0
|
作者
Neykov, Matey [1 ]
Wang, Zhaoran [2 ]
Liu, Han [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat Data Sci, Pittsburgh, PA 15213 USA
[2] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Dept Stat, Evanston, IL 60208 USA
关键词
REGRESSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of noisy high-dimensional phase retrieval is to estimate an 8-sparse parameter beta* is an element of R-d from n realizations of the model Y = (X-inverted perpendicular beta*)(2) + epsilon. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f (X-inverted perpendicular beta*, epsilon) with unknown f and Cov(Y, (X-inverted perpendicular beta*)(2)) > 0. For example, MPR encompasses Y = h(vertical bar X-inverted perpendicular beta*vertical bar) + epsilon with increasing h as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of beta*. Furthermore, we prove that our procedure is minimax optimal over the class of MPR models. Interestingly, our minimax analysis characterizes the statistical price of misspecifying the link function in phase retrieval models. Our theory is backed up by thorough numerical results.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [21] Efficiency for Regularization Parameter Selection in Penalized Likelihood Estimation Of Misspecified Models
    Flynn, Cheryl J.
    Hurvich, Clifford M.
    Simonoff, Jeffrey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1031 - 1043
  • [22] Sellers with Misspecified Models
    Madarasz, Kristof
    Prat, Andrea
    REVIEW OF ECONOMIC STUDIES, 2017, 84 (02): : 790 - 815
  • [23] Prediction with Misspecified Models
    Geweke, John
    Amisano, Gianni
    AMERICAN ECONOMIC REVIEW, 2012, 102 (03): : 482 - 486
  • [24] Doubly misspecified models
    Lin, N. X.
    Shi, J. Q.
    Henderson, R.
    BIOMETRIKA, 2012, 99 (02) : 285 - 298
  • [25] Performance Bounds for Parameter Estimation under Misspecified Models Fundamental findings and applications
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria S.
    Richmond, Christ D.
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) : 142 - 157
  • [26] Trend Agnostic One-Step Estimation of DSGE Models
    Ferroni, Filippo
    B E JOURNAL OF MACROECONOMICS, 2011, 11 (01):
  • [27] Double-Estimation-Friendly Inference for High-Dimensional Misspecified Models
    Shah, Rajen D.
    Buhlmann, Peter
    ENERGY AND BUILDINGS, 2023, 282 : 68 - 91
  • [28] Two-step combined nonparametric likelihood estimation of misspecified semiparametric models
    Bravo, Francesco
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (03) : 769 - 792
  • [29] A Note on Prediction with Misspecified Models
    Syuhada, Khreshna
    JOURNAL OF MATHEMATICAL AND FUNDAMENTAL SCIENCES, 2012, 44 (03) : 217 - 229
  • [30] Discordant relaxations of misspecified models
    Li, Lixiong
    Kedagni, Desire
    Mourifie, Ismael
    QUANTITATIVE ECONOMICS, 2024, 15 (02) : 331 - 379