Agnostic Estimation for Misspecified Phase Retrieval Models

被引:0
|
作者
Neykov, Matey [1 ]
Wang, Zhaoran [2 ]
Liu, Han [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat Data Sci, Pittsburgh, PA 15213 USA
[2] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Dept Stat, Evanston, IL 60208 USA
关键词
REGRESSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of noisy high-dimensional phase retrieval is to estimate an 8-sparse parameter beta* is an element of R-d from n realizations of the model Y = (X-inverted perpendicular beta*)(2) + epsilon. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f (X-inverted perpendicular beta*, epsilon) with unknown f and Cov(Y, (X-inverted perpendicular beta*)(2)) > 0. For example, MPR encompasses Y = h(vertical bar X-inverted perpendicular beta*vertical bar) + epsilon with increasing h as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of beta*. Furthermore, we prove that our procedure is minimax optimal over the class of MPR models. Interestingly, our minimax analysis characterizes the statistical price of misspecifying the link function in phase retrieval models. Our theory is backed up by thorough numerical results.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [31] MISSPECIFIED MODELS WITH DEPENDENT OBSERVATIONS
    DOMOWITZ, I
    WHITE, H
    JOURNAL OF ECONOMETRICS, 1982, 20 (01) : 35 - 58
  • [32] Working with Misspecified Regression Models
    Berk, Richard
    Brown, Lawrence
    Buja, Andreas
    George, Edward
    Zhao, Linda
    JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2018, 34 (03) : 633 - 655
  • [33] A reappraisal of misspecified econometric models
    Monfort, A
    ECONOMETRIC THEORY, 1996, 12 (04) : 597 - 619
  • [34] Synthetic Likelihood in Misspecified Models
    Frazier, David T.
    Nott, David J.
    Drovandi, Christopher
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [35] BAYESIAN ASYMPTOTICS WITH MISSPECIFIED MODELS
    De Blasi, Pierpaolo
    Walker, Stephen G.
    STATISTICA SINICA, 2013, 23 (01) : 169 - 187
  • [36] COMPARING NONNESTED, MISSPECIFIED MODELS
    FINDLEY, D
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1992, 37 (02) : 274 - 283
  • [37] MISSPECIFIED PROPORTIONAL HAZARD MODELS
    STRUTHERS, CA
    KALBFLEISCH, JD
    BIOMETRIKA, 1986, 73 (02) : 363 - 369
  • [38] Working with Misspecified Regression Models
    Richard Berk
    Lawrence Brown
    Andreas Buja
    Edward George
    Linda Zhao
    Journal of Quantitative Criminology, 2018, 34 : 633 - 655
  • [39] Convergence in models of misspecified learning
    Heidhues, Paul
    Koszegi, Botond
    Strack, Philipp
    THEORETICAL ECONOMICS, 2021, 16 (01) : 73 - 99
  • [40] On Posterior Concentration in Misspecified Models
    Ramamoorthi, R. V.
    Sriram, Karthik
    Martin, Ryan
    BAYESIAN ANALYSIS, 2015, 10 (04): : 759 - 789