Agnostic Estimation for Misspecified Phase Retrieval Models

被引:0
|
作者
Neykov, Matey [1 ]
Wang, Zhaoran [2 ]
Liu, Han [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat Data Sci, Pittsburgh, PA 15213 USA
[2] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Elect Engn & Comp Sci, Dept Stat, Evanston, IL 60208 USA
关键词
REGRESSION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of noisy high-dimensional phase retrieval is to estimate an 8-sparse parameter beta* is an element of R-d from n realizations of the model Y = (X-inverted perpendicular beta*)(2) + epsilon. Based on this model, we propose a significant semi-parametric generalization called misspecified phase retrieval (MPR), in which Y = f (X-inverted perpendicular beta*, epsilon) with unknown f and Cov(Y, (X-inverted perpendicular beta*)(2)) > 0. For example, MPR encompasses Y = h(vertical bar X-inverted perpendicular beta*vertical bar) + epsilon with increasing h as a special case. Despite the generality of the MPR model, it eludes the reach of most existing semi-parametric estimators. In this paper, we propose an estimation procedure, which consists of solving a cascade of two convex programs and provably recovers the direction of beta*. Furthermore, we prove that our procedure is minimax optimal over the class of MPR models. Interestingly, our minimax analysis characterizes the statistical price of misspecifying the link function in phase retrieval models. Our theory is backed up by thorough numerical results.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 50 条
  • [41] On the bootstrap in misspecified regression models
    Velilla, S
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (02) : 227 - 242
  • [42] Linear affine estimation in misspecified linear regression models using fuzzy prior information
    Arnold, BF
    Stahlecker, P
    STATISTICS, 1998, 32 (01) : 1 - 12
  • [43] Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables
    Ai, Chunrong
    Chen, Xiaohong
    JOURNAL OF ECONOMETRICS, 2007, 141 (01) : 5 - 43
  • [44] Robust designs for misspecified logistic models
    Adewale, Adeniyi J.
    Wiens, Douglas P.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (01) : 3 - 15
  • [45] Correction to: Working with Misspecified Regression Models
    Richard Berk
    Lawrence Brown
    Andreas Buja
    Edward George
    Linda Zhao
    Journal of Quantitative Criminology, 2020, 36 : 397 - 397
  • [46] Statistical finite elements for misspecified models
    Duffin, Connor
    Cripps, Edward
    Stemler, Thomas
    Girolami, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (02)
  • [47] Misspecified heterogeneity in panel data models
    Matyas, L
    Blanchard, P
    STATISTICAL PAPERS, 1998, 39 (01) : 1 - 27
  • [48] Learning from ambiguous and misspecified models
    Marinacci, Massimo
    Massari, Filippo
    JOURNAL OF MATHEMATICAL ECONOMICS, 2019, 84 : 144 - 149
  • [49] MISSPECIFIED CRB ON PARAMETER ESTIMATION FOR A COUPLED MIXTURE OF POLYNOMIAL PHASE AND SINUSOIDAL FM SIGNALS
    Wang, Pu
    Koike-Akino, Toshiaki
    Pajovic, Milutin
    Orlik, Philip V.
    Tsujita, Wataru
    Gini, Fulvio
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5302 - 5306
  • [50] Inference for Misspecified Models With Fixed Regressors
    Abadie, Alberto
    Imbens, Guido W.
    Zheng, Fanyin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (508) : 1601 - 1614