Fully Bayesian Simultaneous Localization and Spatial Prediction using Gaussian Markov Random Fields (GMRFs)

被引:0
|
作者
Jadaliha, Mahdi [1 ]
Choi, Jongeun [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates a fully Bayesian way to solve the simultaneous localization and spatial prediction (SLAP) problem using a Gaussian Markov random field (GMRF) model. The objective is to simultaneously localize robotic sensors and predict a spatial field of interest using sequentially obtained noisy observations collected by robotic sensors. The set of observations consists of the observed uncertain poses of robotic sensing vehicles and noisy measurements of a spatial field. To be flexible, the spatial field of interest is modeled by a GMRF with uncertain hyperparameters. We derive an approximate Bayesian solution to the problem of computing the predictive inferences of the GMRF and the localization, taking into account observations, uncertain hyperparameters, measurement noise, kinematics of robotic sensors, and uncertain localization. The effectiveness of the proposed algorithm is illustrated by simulation results.
引用
收藏
页码:4592 / 4597
页数:6
相关论文
共 50 条
  • [1] Fully Bayesian Prediction Algorithms for Mobile Robotic Sensors under Uncertain Localization Using Gaussian Markov Random Fields
    Jadaliha, Mahdi
    Jeong, Jinho
    Xu, Yunfei
    Choi, Jongeun
    Kim, Junghoon
    [J]. SENSORS, 2018, 18 (09)
  • [2] FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV RANDOM FIELDS
    Do, Huan N.
    Jadaliha, Mahdi
    Temel, Mehmet
    Choi, Jongeun
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1175 - 1188
  • [3] EFFICIENT SPATIAL PREDICTION USING GAUSSIAN MARKOV RANDOM FIELDS UNDER UNCERTAIN LOCALIZATION
    Jadaliha, Mandi
    Xu, Yunfei
    Choi, Jongeun
    [J]. PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 3, 2013, : 253 - 262
  • [4] Efficient Bayesian Spatial Prediction with Mobile Sensor Networks Using Gaussian Markov Random Fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2171 - 2176
  • [5] Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    [J]. AUTOMATICA, 2013, 49 (12) : 3520 - 3530
  • [6] SPATIAL PREDICTION WITH MOBILE SENSOR NETWORKS USING GAUSSIAN PROCESS REGRESSION BASED ON GAUSSIAN MARKOV RANDOM FIELDS
    Xu, Yunfei
    Choi, Jongeun
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 2, 2012, : 173 - 180
  • [7] Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    [J]. AUTOMATICA, 2012, 48 (08) : 1735 - 1740
  • [8] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [9] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)
  • [10] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79