SPATIAL PREDICTION WITH MOBILE SENSOR NETWORKS USING GAUSSIAN PROCESS REGRESSION BASED ON GAUSSIAN MARKOV RANDOM FIELDS

被引:0
|
作者
Xu, Yunfei [1 ]
Choi, Jongeun [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new class of Gaussian processes is proposed for resource-constrained mobile sensor networks. Such a Gaussian process builds on a GMRF with respect to a proximity graph over a surveillance region. The main advantages of using this class of Gaussian processes over standard Gaussian processes defined by mean and covariance functions are its numerical efficiency and scalability due to its built-in GMRF and its capability of representing a wide range of non-stationary physical processes. The formulas for Bayesian posterior predictive statistics such as prediction mean and variance are derived and a sequential field prediction algorithm is provided for sequentially sampled observations. For a special case using compactly supported kernels, we propose a distributed algorithm to implement field prediction by correctly fusing all observations in Bayesian statistics. Simulation results illustrate the effectiveness of our approach.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 50 条
  • [1] Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    [J]. AUTOMATICA, 2012, 48 (08) : 1735 - 1740
  • [2] Efficient Bayesian Spatial Prediction with Mobile Sensor Networks Using Gaussian Markov Random Fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2171 - 2176
  • [3] Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    [J]. AUTOMATICA, 2013, 49 (12) : 3520 - 3530
  • [4] Spatial Gaussian Process Regression With Mobile Sensor Networks
    Gu, Dongbing
    Hu, Huosheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (08) : 1279 - 1290
  • [5] Spatial Sensor Selection via Gaussian Markov Random Fields
    Nguyen, Linh V.
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1226 - 1239
  • [6] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [7] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)
  • [8] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [9] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [10] EFFICIENT SPATIAL PREDICTION USING GAUSSIAN MARKOV RANDOM FIELDS UNDER UNCERTAIN LOCALIZATION
    Jadaliha, Mandi
    Xu, Yunfei
    Choi, Jongeun
    [J]. PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 3, 2013, : 253 - 262