Efficient Bayesian Spatial Prediction with Mobile Sensor Networks Using Gaussian Markov Random Fields

被引:0
|
作者
Xu, Yunfei [1 ]
Choi, Jongeun [2 ]
Dass, Sarat [3 ]
Maiti, Tapabrata [3 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Mech Engn & Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the problem of predicting a large scale spatial field using successive noisy measurements obtained by mobile sensing agents. The physical spatial field of interest is discretized and modeled by a Gaussian Markov random field (GMRF) with unknown hyperparameters. From a Bayesian perspective, we design a sequential prediction algorithm to exactly compute the predictive inference of the random field. The prediction algorithm correctly takes into account the uncertainty in hyperparameters in a Bayesian way and also is scalable to be usable for the mobile sensor networks with limited resources. An adaptive sampling strategy is also designed for mobile sensing agents to find the most informative locations in taking future measurements in order to minimize the prediction error and the uncertainty in hyperparameters simultaneously. The effectiveness of the proposed algorithms is illustrated by a numerical experiment.
引用
收藏
页码:2171 / 2176
页数:6
相关论文
共 50 条
  • [1] Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    Dass, Sarat
    Maiti, Tapabrata
    [J]. AUTOMATICA, 2013, 49 (12) : 3520 - 3530
  • [2] SPATIAL PREDICTION WITH MOBILE SENSOR NETWORKS USING GAUSSIAN PROCESS REGRESSION BASED ON GAUSSIAN MARKOV RANDOM FIELDS
    Xu, Yunfei
    Choi, Jongeun
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 2, 2012, : 173 - 180
  • [3] Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields
    Xu, Yunfei
    Choi, Jongeun
    [J]. AUTOMATICA, 2012, 48 (08) : 1735 - 1740
  • [4] EFFICIENT SPATIAL PREDICTION USING GAUSSIAN MARKOV RANDOM FIELDS UNDER UNCERTAIN LOCALIZATION
    Jadaliha, Mandi
    Xu, Yunfei
    Choi, Jongeun
    [J]. PROCEEDINGS OF THE ASME 5TH ANNUAL DYNAMIC SYSTEMS AND CONTROL DIVISION CONFERENCE AND JSME 11TH MOTION AND VIBRATION CONFERENCE, DSCC 2012, VOL 3, 2013, : 253 - 262
  • [5] Fully Bayesian Simultaneous Localization and Spatial Prediction using Gaussian Markov Random Fields (GMRFs)
    Jadaliha, Mahdi
    Choi, Jongeun
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 4592 - 4597
  • [6] Spatial Sensor Selection via Gaussian Markov Random Fields
    Nguyen, Linh V.
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1226 - 1239
  • [7] Fully Bayesian Prediction Algorithms for Mobile Robotic Sensors under Uncertain Localization Using Gaussian Markov Random Fields
    Jadaliha, Mahdi
    Jeong, Jinho
    Xu, Yunfei
    Choi, Jongeun
    Kim, Junghoon
    [J]. SENSORS, 2018, 18 (09)
  • [8] FULLY BAYESIAN FIELD SLAM USING GAUSSIAN MARKOV RANDOM FIELDS
    Do, Huan N.
    Jadaliha, Mahdi
    Temel, Mehmet
    Choi, Jongeun
    [J]. ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1175 - 1188
  • [9] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [10] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    [J]. Advances in Data Analysis and Classification, 2008, 2 (1)