Fully Bayesian Simultaneous Localization and Spatial Prediction using Gaussian Markov Random Fields (GMRFs)

被引:0
|
作者
Jadaliha, Mahdi [1 ]
Choi, Jongeun [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates a fully Bayesian way to solve the simultaneous localization and spatial prediction (SLAP) problem using a Gaussian Markov random field (GMRF) model. The objective is to simultaneously localize robotic sensors and predict a spatial field of interest using sequentially obtained noisy observations collected by robotic sensors. The set of observations consists of the observed uncertain poses of robotic sensing vehicles and noisy measurements of a spatial field. To be flexible, the spatial field of interest is modeled by a GMRF with uncertain hyperparameters. We derive an approximate Bayesian solution to the problem of computing the predictive inferences of the GMRF and the localization, taking into account observations, uncertain hyperparameters, measurement noise, kinematics of robotic sensors, and uncertain localization. The effectiveness of the proposed algorithm is illustrated by simulation results.
引用
收藏
页码:4592 / 4597
页数:6
相关论文
共 50 条
  • [21] A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields
    Chagneau, Pierrette
    Mortier, Frederic
    Picard, Nicolas
    Bacro, Jean-Noel
    BIOMETRICS, 2011, 67 (01) : 97 - 105
  • [22] Bayesian Clustering Using Hidden Markov Random Fields in Spatial Population Genetics
    Francois, Olivier
    Ancelet, Sophie
    Guillot, Gilles
    GENETICS, 2006, 174 (02) : 805 - 816
  • [23] Spatial Sensor Selection via Gaussian Markov Random Fields
    Nguyen, Linh V.
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1226 - 1239
  • [24] Bayesian multiscale analysis of images modeled as Gaussian Markov random fields
    Thon, Kevin
    Rue, Havard
    Skrovseth, Stein Olav
    Godtliebsen, Fred
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (01) : 49 - 61
  • [25] Fitting Gaussian Markov random fields to Gaussian fields
    Rue, H
    Tjelmeland, H
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 31 - 49
  • [26] Horde of Bandits using Gaussian Markov Random Fields
    Vaswani, Sharan
    Schmidt, Mark
    Lakshmanan, Laks V. S.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 690 - 699
  • [27] Bayesian image classification using Markov random fields
    Berthod, M
    Kato, Z
    Yu, S
    Zerubia, J
    IMAGE AND VISION COMPUTING, 1996, 14 (04) : 285 - 295
  • [28] Bayesian image classification using Markov random fields
    INRIA, Antipolis, France
    Image Vision Comput, 4 (285-295):
  • [29] Bayesian spatial prediction for closed Skew Gaussian random field
    Mohammadzadeh, Mohsen
    Karimi, Omid
    PROCEEDINGS OF THE IAMG '07: GEOMATHEMATICS AND GIS ANALYSIS OF RESOURCES, ENVIRONMENT AND HAZARDS, 2007, : 684 - +
  • [30] Transformed Gaussian Markov random fields and spatial modeling of species abundance
    Prates, Marcos O.
    Dey, Dipak K.
    Willig, Michael R.
    Yan, Jun
    SPATIAL STATISTICS, 2015, 14 : 382 - 399