Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals

被引:26
|
作者
Llera, A. [1 ]
Gomez, V.
Kappen, H. J.
机构
[1] Radboud Univ Nijmegen, Nijmegen, Netherlands
关键词
POTENTIALS;
D O I
10.1162/NECO_a_00348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a probabilistic model that combines a classifier with an extra reinforcement signal (RS) encoding the probability of an erroneous feedback being delivered by the classifier. This representation computes the class probabilities given the task related features and the reinforcement signal. Using expectation maximization (EM) to estimate the parameter values under such a model shows that some existing adaptive classifiers are particular cases of such an EM algorithm. Further, we present a new algorithm for adaptive classification, which we call constrained means adaptive classifier, and show using EEG data and simulated RS that this classifier is able to significantly outperform state-of-the-art adaptive classifiers.
引用
收藏
页码:2900 / 2923
页数:24
相关论文
共 50 条
  • [21] Automated and adaptive feature extraction for brain-computer interfaces by using wavelet packet
    Yan, Guo-Zheng
    Yang, Bang-Hua
    Chen, Shuo
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 4248 - +
  • [22] EEG Subspace Analysis and Classification Using Principal Angles for Brain-Computer Interfaces
    Ashari, Rehab
    Anderson, Charles
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BRAIN COMPUTER INTERFACES (CIBCI), 2014, : 57 - 63
  • [23] Adaptive Multiclass Classification for Brain Computer Interfaces
    Llera, A.
    Gomez, V.
    Kappen, H. J.
    NEURAL COMPUTATION, 2014, 26 (06) : 1108 - 1127
  • [24] Regularized Kalman filter for brain-computer interfaces using local field potential signals
    Asgharpour, Matin
    Foodeh, Reza
    Daliri, Mohammad Reza
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 350
  • [25] A Review of Adaptive Feature Extraction and Classification Methods for EEG-Based Brain-Computer Interfaces
    Sun, Shiliang
    Zhou, Jin
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1746 - 1753
  • [26] Adaptive classification to reduce non-stationarity in visual evoked potential brain-computer interfaces
    Kapgate, Deepak
    Kalbande, Dhananjay
    Shrawankar, Urmila
    BIO-ALGORITHMS AND MED-SYSTEMS, 2019, 15 (02)
  • [27] Crosstalk disrupts the production of motor imagery brain signals in brain-computer interfaces
    Neo, Phoebe S. -H.
    Mayne, Terence
    Fu, Xiping
    Huang, Zhiyi
    Franz, Elizabeth A.
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2021, 9 (01)
  • [28] Adaptive Spontaneous Brain-Computer Interfaces Based on Software Agents
    Castillo-Garcia, Javier F.
    Caicedo-Bravo, Eduardo F.
    Bastos, Teodiano F.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2018, 10 (02)
  • [29] Deep Learning-based Classification for Brain-Computer Interfaces
    Thomas, John
    Maszczyk, Tomasz
    Sinha, Nishant
    Kluge, Tilmann
    Dauwels, Justin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 234 - 239
  • [30] Comparison of EEG pattern classification methods for brain-computer interfaces
    Dias, N. S.
    Kamrunnahar, A.
    Mendes, P. M.
    Schiff, S. J.
    Correia, J. H.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2540 - +