Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals

被引:26
|
作者
Llera, A. [1 ]
Gomez, V.
Kappen, H. J.
机构
[1] Radboud Univ Nijmegen, Nijmegen, Netherlands
关键词
POTENTIALS;
D O I
10.1162/NECO_a_00348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a probabilistic model that combines a classifier with an extra reinforcement signal (RS) encoding the probability of an erroneous feedback being delivered by the classifier. This representation computes the class probabilities given the task related features and the reinforcement signal. Using expectation maximization (EM) to estimate the parameter values under such a model shows that some existing adaptive classifiers are particular cases of such an EM algorithm. Further, we present a new algorithm for adaptive classification, which we call constrained means adaptive classifier, and show using EEG data and simulated RS that this classifier is able to significantly outperform state-of-the-art adaptive classifiers.
引用
收藏
页码:2900 / 2923
页数:24
相关论文
共 50 条
  • [11] Reinforcement learning for adaptive threshold control of restorative brain-computer interfaces: a Bayesian simulation
    Bauer, Robert
    Gharabaghi, Alireza
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [12] Adaptive classification for brain computer interfaces
    Blumberg, Julie
    Rickert, Joern
    Waldert, Stephan
    Schulze-Bonhage, Andreas
    Aertsen, Ad
    Mehring, Carsten
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2536 - +
  • [13] Brain-computer interfaces (BCIs): Detection instead of classification
    Schalk, G.
    Brunner, P.
    Gerhardt, L. A.
    Bischof, H.
    Wolpaw, J. R.
    JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) : 51 - 62
  • [14] Collaborative Brain-Computer Interfaces for the Automatic Classification of Images
    Matran-Fernandez, Ana
    Poli, Riccardo
    Cinel, Caterina
    2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 1096 - 1099
  • [15] Adaptive Offset Correction for Intracortical Brain-Computer Interfaces
    Homer, Mark L.
    Perge, Janos A.
    Black, Michael J.
    Harrison, Matthew T.
    Cash, Sydney S.
    Hochberg, Leigh R.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2014, 22 (02) : 239 - 248
  • [16] Preprocessing and meta-classification for brain-computer interfaces
    Hammon, Paul S.
    de Sa, Virginia R.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (03) : 518 - 525
  • [17] Brain-computer interfaces
    Sajda, Paul
    Mueller, Klaus-Robert
    Shenoy, Krishna V.
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 16 - 17
  • [18] New method of classifying eeg signals in brain-computer interfaces
    Tang, Yan
    Liu, Jian-Xin
    Gong, An-Dong
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2009, 38 (06): : 1034 - 1038
  • [19] Classification of Facial Expressions for Intended Display of Emotions Using Brain-Computer Interfaces
    Salari, Efraim
    Freudenburg, Zachary V.
    Vansteensel, Mariska J.
    Ramsey, Nick F.
    ANNALS OF NEUROLOGY, 2020, 88 (03) : 631 - 636
  • [20] Classification of Imagery Movement Tasks for Brain-Computer Interfaces Using Regression Tree
    Wong, Chiman
    Wan, Feng
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 461 - 468