Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals

被引:26
|
作者
Llera, A. [1 ]
Gomez, V.
Kappen, H. J.
机构
[1] Radboud Univ Nijmegen, Nijmegen, Netherlands
关键词
POTENTIALS;
D O I
10.1162/NECO_a_00348
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a probabilistic model that combines a classifier with an extra reinforcement signal (RS) encoding the probability of an erroneous feedback being delivered by the classifier. This representation computes the class probabilities given the task related features and the reinforcement signal. Using expectation maximization (EM) to estimate the parameter values under such a model shows that some existing adaptive classifiers are particular cases of such an EM algorithm. Further, we present a new algorithm for adaptive classification, which we call constrained means adaptive classifier, and show using EEG data and simulated RS that this classifier is able to significantly outperform state-of-the-art adaptive classifiers.
引用
收藏
页码:2900 / 2923
页数:24
相关论文
共 50 条
  • [31] Parametric models and spectral analysis for classification in brain-computer interfaces
    Kelly, S
    Burke, D
    de Chazall, P
    Reilly, R
    DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 307 - 310
  • [32] Classification of EEG Signals Based on Filter Bank and Sparse Representation in Motor Imagery Brain-Computer Interfaces
    Wang, Jin
    Wei, Qingguo
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [33] Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain-Computer Interfaces
    Lu, Yuyi
    Wang, Wenbo
    Lian, Baosheng
    He, Chencheng
    SUSTAINABILITY, 2024, 16 (15)
  • [34] Brain-computer interfaces (BCIS): Comparing the performance of different brain signals using BCI2000
    Mellinger, J
    Nijboer, F
    Schalk, G
    McFarland, DJ
    Vaughan, TM
    Wolpaw, JR
    Birbaumer, N
    Kuebler, A
    PSYCHOPHYSIOLOGY, 2004, 41 : S49 - S49
  • [35] Brain-computer interfaces: a review
    Coyle, S
    Ward, T
    Markham, C
    INTERDISCIPLINARY SCIENCE REVIEWS, 2003, 28 (02) : 112 - 118
  • [36] Brain-Computer Interfaces in Medicine
    Shih, Jerry J.
    Krusienski, Dean J.
    Wolpaw, Jonathan R.
    MAYO CLINIC PROCEEDINGS, 2012, 87 (03) : 268 - 279
  • [37] Flexible brain-computer interfaces
    Tang, Xin
    Shen, Hao
    Zhao, Siyuan
    Li, Na
    Liu, Jia
    NATURE ELECTRONICS, 2023, 6 (02) : 109 - 118
  • [38] Multimodal Brain-Computer Interfaces
    Alexander Maye
    Andreas K.Engel
    Tsinghua Science and Technology, 2011, 16 (02) : 133 - 139
  • [39] Brain-computer interfaces (BCIs)
    Berger, Theodore W.
    JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) : 1 - 1
  • [40] An update for brain-computer interfaces
    不详
    NATURE ELECTRONICS, 2024, 7 (09): : 725 - 725