Adaptive Multiclass Classification for Brain Computer Interfaces

被引:24
|
作者
Llera, A. [1 ]
Gomez, V.
Kappen, H. J.
机构
[1] Radboud Univ Nijmegen, NL-6525 EZ Nijmegen, Netherlands
关键词
COMPONENTS; BCI;
D O I
10.1162/NECO_a_00592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bunau, Blankertz, and Muller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.
引用
收藏
页码:1108 / 1127
页数:20
相关论文
共 50 条
  • [1] Adaptive classification for brain computer interfaces
    Blumberg, Julie
    Rickert, Joern
    Waldert, Stephan
    Schulze-Bonhage, Andreas
    Aertsen, Ad
    Mehring, Carsten
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2536 - +
  • [2] Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces
    Nicolas-Alonso, Luis F.
    Corralejo, Rebeca
    Gomez-Pilar, Javier
    Alvarez, Daniel
    Hornero, Roberto
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2015, 23 (04) : 702 - 712
  • [3] Automatic and Adaptive Classification of Electroencephalographic Signals for Brain Computer Interfaces
    Germán Rodríguez-Bermúdez
    Pedro J. García-Laencina
    Journal of Medical Systems, 2012, 36 : 51 - 63
  • [4] Automatic and Adaptive Classification of Electroencephalographic Signals for Brain Computer Interfaces
    Rodriguez-Bermudez, German
    Garcia-Laencina, Pedro J.
    JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (01) : S51 - S63
  • [5] Adaptive Classification on Brain-Computer Interfaces Using Reinforcement Signals
    Llera, A.
    Gomez, V.
    Kappen, H. J.
    NEURAL COMPUTATION, 2012, 24 (11) : 2900 - 2923
  • [6] A Framework of Adaptive Brain Computer Interfaces
    Li, Yan
    Koike, Yasuharu
    Sugiyama, Masashi
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOLS 1-4, 2009, : 473 - +
  • [7] Adaptive semi-supervised classification to reduce intersession non-stationarity in multiclass motor imagery-based brain-computer interfaces
    Nicolas-Alonso, Luis F.
    Corralejo, Rebeca
    Gomez-Pilar, Javier
    Alvarez, Daniel
    Hornero, Roberto
    NEUROCOMPUTING, 2015, 159 : 186 - 196
  • [8] Multiclass Brain-Computer Interface Classification by Riemannian Geometry
    Barachant, Alexandre
    Bonnet, Stephane
    Congedo, Marco
    Jutten, Christian
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 920 - 928
  • [9] Towards Adaptive Classification using Riemannian Geometry approaches in Brain-Computer Interfaces
    Kumar, Satyam
    Yger, Florian
    Lotte, Fabien
    2019 7TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2019, : 19 - 24
  • [10] Double-Criteria Active Learning for Multiclass Brain-Computer Interfaces
    She, Qingshan
    Chen, Kang
    Luo, Zhizeng
    Thinh Nguyen
    Potter, Thomas
    Zhang, Yingchun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2020, 2020