Adaptive Multiclass Classification for Brain Computer Interfaces

被引:24
|
作者
Llera, A. [1 ]
Gomez, V.
Kappen, H. J.
机构
[1] Radboud Univ Nijmegen, NL-6525 EZ Nijmegen, Netherlands
关键词
COMPONENTS; BCI;
D O I
10.1162/NECO_a_00592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bunau, Blankertz, and Muller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.
引用
收藏
页码:1108 / 1127
页数:20
相关论文
共 50 条
  • [21] AN ADAPTIVE PROCEDURE FOR MULTICLASS PATTERN CLASSIFICATION
    WEE, WG
    FU, KS
    IEEE TRANSACTIONS ON COMPUTERS, 1968, C 17 (02) : 178 - &
  • [22] Choosing optimal mental tasks for classification in brain computer interfaces
    Tavakolian, K
    Rezaei, S
    Setarehdan, SK
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND APPLICATIONS, VOLS 1AND 2, 2004, : 396 - 399
  • [23] On the use of interaction error potentials for adaptive brain computer interfaces
    Llera, A.
    van Gerven, M. A. J.
    Gomez, V.
    Jensen, O.
    Kappen, H. J.
    NEURAL NETWORKS, 2011, 24 (10) : 1120 - 1127
  • [24] Adaptive Offset Correction for Intracortical Brain-Computer Interfaces
    Homer, Mark L.
    Perge, Janos A.
    Black, Michael J.
    Harrison, Matthew T.
    Cash, Sydney S.
    Hochberg, Leigh R.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2014, 22 (02) : 239 - 248
  • [25] Classification of brain-computer interfaces using ICA + CSSD
    Department of Info-Physics Engineering, Central South University, Changsha 410083, China
    不详
    Dianzi Keji Diaxue Xuebao, 2008, 3 (466-469):
  • [26] Pattern Classification of Deep Brain Local Field Potentials for Brain Computer Interfaces
    Mamun, K. A.
    Huda, M. N.
    Mace, M.
    Lutman, M. E.
    Stein, J.
    Liu, X.
    Aziz, T.
    Vaidyanathan, R.
    Wang, S.
    2012 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2012, : 518 - 523
  • [27] Brain–computer interfaces
    He, Bin
    Gao, Shangkai
    Yuan, Han
    Wolpaw, Jonathan R.
    Neural Engineering: Second Edition, 2013, : 87 - 151
  • [28] Deep Learning-based Classification for Brain-Computer Interfaces
    Thomas, John
    Maszczyk, Tomasz
    Sinha, Nishant
    Kluge, Tilmann
    Dauwels, Justin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 234 - 239
  • [29] Comparison of EEG pattern classification methods for brain-computer interfaces
    Dias, N. S.
    Kamrunnahar, A.
    Mendes, P. M.
    Schiff, S. J.
    Correia, J. H.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2540 - +
  • [30] Adaptive Spontaneous Brain-Computer Interfaces Based on Software Agents
    Castillo-Garcia, Javier F.
    Caicedo-Bravo, Eduardo F.
    Bastos, Teodiano F.
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2018, 10 (02)