Adaptive Multiclass Classification for Brain Computer Interfaces

被引:24
|
作者
Llera, A. [1 ]
Gomez, V.
Kappen, H. J.
机构
[1] Radboud Univ Nijmegen, NL-6525 EZ Nijmegen, Netherlands
关键词
COMPONENTS; BCI;
D O I
10.1162/NECO_a_00592
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bunau, Blankertz, and Muller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.
引用
收藏
页码:1108 / 1127
页数:20
相关论文
共 50 条
  • [41] Batch mode active learning algorithm combining with self-training for multiclass brain-computer interfaces
    Chen, Minyou
    Tan, Xuemin
    Journal of Information and Computational Science, 2015, 12 (06): : 2351 - 2359
  • [42] Classification Performance of SSVEP Brain-Computer Interfaces Based on Functional Connectivity
    Rodrigues, Paula G.
    Silva Junior, Jose I.
    Costa, Thiago B. S.
    Attux, Romis
    Castellano, Gabriela
    Soriano, Diogo C.
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 115 - 120
  • [43] Inverse solutions for Brain-Computer Interfaces: Effects of regularisation on localisation and classification
    Goel, Mohit Kumar
    Chavarriaga, Ricardo
    Millan, Jose del R.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 258 - 263
  • [44] Multiple classifier system for EEG signal classification with application to brain–computer interfaces
    Amir Ahangi
    Mehdi Karamnejad
    Nima Mohammadi
    Reza Ebrahimpour
    Nasoor Bagheri
    Neural Computing and Applications, 2013, 23 : 1319 - 1327
  • [45] Adaptive Assistance for Brain-Computer Interfaces by Online Prediction of Command Reliability
    Saeedi, Sareh
    Chavarriaga, Ricardo
    Leeb, Robert
    Millan, Jose del R.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2016, 11 (01) : 32 - 39
  • [46] Electrocorticographic signals classification for brain computer interfaces using stacked-autoencoders
    Cancino, Sandra
    Saa, Jaime Delgado
    APPLICATIONS OF MACHINE LEARNING 2020, 2020, 11511
  • [47] Adaptive spatial filter based on ERD/ERS for Brain-Computer Interfaces
    Lu, Jun
    Xie, Sheng-Li
    Zhang, Jin-Long
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2009, 31 (02): : 314 - 318
  • [48] The effect of distinct mental strategies on classification performance for brain-computer interfaces
    Friedrich, Elisabeth V. C.
    Scherer, Reinhold
    Neuper, Christa
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2012, 84 (01) : 86 - 94
  • [49] CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces
    Kant, Piyush
    Laskar, Shahedul Haque
    Hazarika, Jupitara
    Mahamune, Rupesh
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 345
  • [50] On the on-line learning algorithms for EEG signal classification in brain computer interfaces
    Sun, SL
    Zhang, CS
    Lu, NJ
    FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 638 - 647