Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2

被引:92
|
作者
Kurkcuoglu, Zeynep [1 ]
Koukos, Panagiotis I. [1 ]
Citro, Nevia [1 ]
Trellet, Mikael E. [1 ]
Rodrigues, J. P. G. L. M. [3 ]
Moreira, Irina S. [1 ,2 ]
Roel-Touris, Jorge [1 ]
Melquiond, Adrien S. J. [1 ]
Geng, Cunliang [1 ]
Schaarschmidt, Jorg [1 ]
Xue, Li C. [1 ]
Vangone, Anna [1 ]
Bonvin, A. M. J. J. [1 ]
机构
[1] Univ Utrecht, Fac Sci Chem, Bijvoet Ctr Biomol Res, Padualaan 8, NL-3584 CH Utrecht, Netherlands
[2] Univ Coimbra, CNC Ctr Neurosci & Cell Biol, FMUC, Rua Larga,Polo 1,1 Andar, P-3004517 Coimbra, Portugal
[3] Stanford Univ, James H Clark Ctr, 318 Campus Dr,S210, Stanford, CA 94305 USA
基金
欧盟地平线“2020”;
关键词
D3R; Drug design data resource; Docking; Binding affinity; Ranking; Intermolecular contacts; BILE-ACID BINDING; CATALYTIC MECHANISM; RECEPTOR FXR; WEB SERVER; DOCKING; PRODIGY; ANALOGS; CAPRI; TOOL; SET;
D O I
10.1007/s10822-017-0049-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 angstrom from the crystal structure. Only 6/35 targets were within 2.5 angstrom RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 angstrom ), with an average RMSD of 4.1 angstrom. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.
引用
收藏
页码:175 / 185
页数:11
相关论文
共 50 条
  • [1] Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2
    Zeynep Kurkcuoglu
    Panagiotis I. Koukos
    Nevia Citro
    Mikael E. Trellet
    J. P. G. L. M. Rodrigues
    Irina S. Moreira
    Jorge Roel-Touris
    Adrien S. J. Melquiond
    Cunliang Geng
    Jörg Schaarschmidt
    Li C. Xue
    Anna Vangone
    A. M. J. J. Bonvin
    [J]. Journal of Computer-Aided Molecular Design, 2018, 32 : 175 - 185
  • [2] D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions
    Gathiaka, Symon
    Liu, Shuai
    Chiu, Michael
    Yang, Huanwang
    Stuckey, Jeanne A.
    Kang, You Na
    Delproposto, Jim
    Kubish, Ginger
    Dunbar, James B., Jr.
    Carlson, Heather A.
    Burley, Stephen K.
    Walters, W. Patrick
    Amaro, Rommie E.
    Feher, Victoria A.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 651 - 668
  • [3] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91
  • [4] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [5] D3R Grand Challenge 4: Blind prediction of protein-ligand poses and affinity predictions
    Gaieb, Zied
    Parks, Conor
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, Patrick
    Lewis, Richard
    Bembenek, Scott
    Burley, Stephen
    Amaro, Rommie
    Gilson, Michael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    Gaieb, Zied
    Liu, Shuai
    Gathiaka, Symon
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Feher, Victoria A.
    Walters, W. Patrick
    Kuhn, Bernd
    Rudolph, Markus G.
    Burley, Stephen K.
    Gilson, Michael K.
    Amaro, Rommie E.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 1 - 20
  • [7] Blinded prediction of protein-ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4
    Zou, Junjie
    Tian, Chuan
    Simmerling, Carlos
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1021 - 1029
  • [8] D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    Parks, Conor D.
    Gaieb, Zied
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Jansen, Johanna M.
    McGaughey, Georgia
    Lewis, Richard A.
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 99 - 119
  • [9] D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions
    Symon Gathiaka
    Shuai Liu
    Michael Chiu
    Huanwang Yang
    Jeanne A. Stuckey
    You Na Kang
    Jim Delproposto
    Ginger Kubish
    James B. Dunbar
    Heather A. Carlson
    Stephen K. Burley
    W. Patrick Walters
    Rommie E. Amaro
    Victoria A. Feher
    Michael K. Gilson
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 651 - 668
  • [10] Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Panagiotis I. Koukos
    Li C. Xue
    Alexandre M. J. J. Bonvin
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 83 - 91