D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions

被引:148
|
作者
Gathiaka, Symon [1 ]
Liu, Shuai [1 ]
Chiu, Michael [1 ]
Yang, Huanwang [2 ]
Stuckey, Jeanne A. [3 ]
Kang, You Na [3 ]
Delproposto, Jim [3 ]
Kubish, Ginger [3 ]
Dunbar, James B., Jr. [4 ]
Carlson, Heather A. [4 ]
Burley, Stephen K. [2 ,5 ,6 ]
Walters, W. Patrick [7 ]
Amaro, Rommie E. [1 ,8 ]
Feher, Victoria A. [1 ,8 ,9 ]
Gilson, Michael K. [1 ,5 ,8 ]
机构
[1] Univ Calif San Diego, Drug Design Data Resource, Ctr Res Biol Syst, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Rutgers State Univ, Inst Quantitat Biomed, Dept Chem & Chem Biol, RCSB Prot Data Bank,Ctr Integrat Prote Res, 174 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[3] Univ Michigan, Inst Life Sci, Struct Biol Ctr, 210 Washtenaw Ave, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Med Chem, 428 Church St, Ann Arbor, MI 48109 USA
[5] Univ Calif San Diego, Skaggs Sch Pharm & Pharmaceut Sci, Dept Pharm, 9500 Gilman Dr, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, San Diego Supercomp Ctr, 9500 Gilman Dr, La Jolla, CA 92093 USA
[7] Relay Therapeut, 215 First St, Cambridge, MA 20142 USA
[8] Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA
[9] Schrodinger Inc, New York, NY 10036 USA
基金
美国国家卫生研究院;
关键词
D3R; Docking; Scoring; Free energy; Ligand; Protein; CSAR BENCHMARK EXERCISE; HSP90; INHIBITORS; DATA-BANK; DOCKING; MAP4K4; DATABASE; QUALITY; DESIGN; TARGET; IDENTIFICATION;
D O I
10.1007/s10822-016-9946-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Drug Design Data Resource (D3R) ran Grand Challenge 2015 between September 2015 and February 2016. Two targets served as the framework to test community docking and scoring methods: (1) HSP90, donated by AbbVie and the Community Structure Activity Resource (CSAR), and (2) MAP4K4, donated by Genentech. The challenges for both target datasets were conducted in two stages, with the first stage testing pose predictions and the capacity to rank compounds by affinity with minimal structural data; and the second stage testing methods for ranking compounds with knowledge of at least a subset of the ligand-protein poses. An additional sub-challenge provided small groups of chemically similar HSP90 compounds amenable to alchemical calculations of relative binding free energy. Unlike previous blinded Challenges, we did not provide cognate receptors or receptors prepared with hydrogens and likewise did not require a specified crystal structure to be used for pose or affinity prediction in Stage 1. Given the freedom to select from over 200 crystal structures of HSP90 in the PDB, participants employed workflows that tested not only core docking and scoring technologies, but also methods for addressing water-mediated ligand-protein interactions, binding pocket flexibility, and the optimal selection of protein structures for use in docking calculations. Nearly 40 participating groups submitted over 350 prediction sets for Grand Challenge 2015. This overview describes the datasets and the organization of the challenge components, summarizes the results across all submitted predictions, and considers broad conclusions that may be drawn from this collaborative community endeavor.
引用
收藏
页码:651 / 668
页数:18
相关论文
共 50 条
  • [1] D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions
    Symon Gathiaka
    Shuai Liu
    Michael Chiu
    Huanwang Yang
    Jeanne A. Stuckey
    You Na Kang
    Jim Delproposto
    Ginger Kubish
    James B. Dunbar
    Heather A. Carlson
    Stephen K. Burley
    W. Patrick Walters
    Rommie E. Amaro
    Victoria A. Feher
    Michael K. Gilson
    [J]. Journal of Computer-Aided Molecular Design, 2016, 30 : 651 - 668
  • [2] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91
  • [3] D3R Grand Challenge 4: Blind prediction of protein-ligand poses and affinity predictions
    Gaieb, Zied
    Parks, Conor
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, Patrick
    Lewis, Richard
    Bembenek, Scott
    Burley, Stephen
    Amaro, Rommie
    Gilson, Michael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [4] Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Panagiotis I. Koukos
    Li C. Xue
    Alexandre M. J. J. Bonvin
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 83 - 91
  • [5] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [6] Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015
    Deng, Nanjie
    Flynn, William F.
    Xia, Junchao
    Vijayan, R. S. K.
    Zhang, Baofeng
    He, Peng
    Mentes, Ahmet
    Gallicchio, Emilio
    Levy, Ronald M.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 743 - 751
  • [7] Protein-ligand pose and affinity prediction: Case study on BACE1 cyclic ligand dataset in D3R Grand Challenge 4
    Yang, Chao
    Lu, Jianing
    Yang, Yuwei
    Zhang, Yingkai
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [8] Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015
    Xu, Xianjin
    Yan, Chengfei
    Zou, Xiaoqin
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2017, 31 (08) : 689 - 699
  • [9] Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015
    Xianjin Xu
    Chengfei Yan
    Xiaoqin Zou
    [J]. Journal of Computer-Aided Molecular Design, 2017, 31 : 689 - 699
  • [10] D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
    Zied Gaieb
    Conor D. Parks
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Millard H. Lambert
    Neysa Nevins
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1 - 18