Blinded prediction of protein-ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4

被引:32
|
作者
Zou, Junjie [1 ,2 ]
Tian, Chuan [1 ,2 ]
Simmerling, Carlos [1 ,2 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
关键词
Drug design; Binding affinity; Alchemical free energy calculations; Thermodynamic integration; Amber; MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY CALCULATIONS; RELIABLE PREDICTION; BACE-1; INHIBITORS; ACCURATE; PARAMETERS; DISCOVERY; DESIGN; P3;
D O I
10.1007/s10822-019-00223-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the framework of the 2018 Drug Design Data Resource grand challenge 4, blinded predictions on relative binding free energy were performed for a set of 39 ligands of the Cathepsin S protein. We leveraged the GPU-accelerated thermodynamic integration of Amber 18 to advance our computational prediction. When our entry was compared to experimental results, a good correlation was observed (Kendall's tau: 0.62, Spearman's rho: 0.80 and Pearson's R: 0.82). We designed a parallelized transformation map that placed ligands into several groups based on common alchemical substructures; TI transformations were carried out for each ligand to the relevant substructure, and between substructures. Our calculations were all conducted using the linear potential scaling scheme in Amber TI because we believe the softcore potential/dual-topology approach as implemented in current Amber TI is highly fault-prone for some transformations. The issue is illustrated by using two examples in which typical preparation for the dual-topology approach of Amber TI fails. Overall, the high accuracy of our prediction is a result of recent advances in force fields (ff14SB and GAFF), as well as rapid calculation of ensemble averages enabled by the GPU implementation of Amber. The success shown here in a blinded prediction strongly suggests that alchemical free energy calculation in Amber is a promising tool for future commercial drug design.
引用
收藏
页码:1021 / 1029
页数:9
相关论文
共 50 条
  • [1] Blinded prediction of protein–ligand binding affinity using Amber thermodynamic integration for the 2018 D3R grand challenge 4
    Junjie Zou
    Chuan Tian
    Carlos Simmerling
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1021 - 1029
  • [2] D3R Grand Challenge 4: Blind prediction of protein-ligand poses and affinity predictions
    Gaieb, Zied
    Parks, Conor
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, Patrick
    Lewis, Richard
    Bembenek, Scott
    Burley, Stephen
    Amaro, Rommie
    Gilson, Michael
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [3] Protein-ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Koukos, Panagiotis I.
    Xue, Li C.
    Bonvin, Alexandre M. J. J.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 83 - 91
  • [4] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [5] D3R grand challenge 4: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    Parks, Conor D.
    Gaieb, Zied
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Jansen, Johanna M.
    McGaughey, Georgia
    Lewis, Richard A.
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (02) : 99 - 119
  • [6] D3R grand challenge 2015: Evaluation of protein-ligand pose and affinity predictions
    Gathiaka, Symon
    Liu, Shuai
    Chiu, Michael
    Yang, Huanwang
    Stuckey, Jeanne A.
    Kang, You Na
    Delproposto, Jim
    Kubish, Ginger
    Dunbar, James B., Jr.
    Carlson, Heather A.
    Burley, Stephen K.
    Walters, W. Patrick
    Amaro, Rommie E.
    Feher, Victoria A.
    Gilson, Michael K.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 651 - 668
  • [7] D3R Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies
    Gaieb, Zied
    Liu, Shuai
    Gathiaka, Symon
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Feher, Victoria A.
    Walters, W. Patrick
    Kuhn, Bernd
    Rudolph, Markus G.
    Burley, Stephen K.
    Gilson, Michael K.
    Amaro, Rommie E.
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 1 - 20
  • [8] Protein-ligand pose and affinity prediction: Case study on BACE1 cyclic ligand dataset in D3R Grand Challenge 4
    Yang, Chao
    Lu, Jianing
    Yang, Yuwei
    Zhang, Yingkai
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [9] D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
    Zied Gaieb
    Conor D. Parks
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Millard H. Lambert
    Neysa Nevins
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 1 - 18
  • [10] Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Panagiotis I. Koukos
    Li C. Xue
    Alexandre M. J. J. Bonvin
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 83 - 91