Lattice Wigner equation

被引:6
|
作者
Solorzano, S. [1 ]
Mendoza, M. [1 ]
Succi, S. [2 ,3 ]
Herrmann, H. J. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Bldg Mat, Computat Phys Engn Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Harvard Univ, Inst Adv Computat Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
欧洲研究理事会;
关键词
BOLTZMANN-EQUATION; TRANSPORT-EQUATION; QUANTUM-MECHANICS; SPECTRAL METHOD; GAS AUTOMATA; EQUILIBRIUM; SIMULATIONS;
D O I
10.1103/PhysRevE.97.013308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Note on Wigner Functions and *-Genvalue Equation
    Jing Si-Cong
    Lin Bing-Sheng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (04) : 605 - 608
  • [32] Stability of the Wigner equation - a singular case
    Ilisevic, Dijana
    Turnsek, Aleksej
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 273 - 287
  • [33] Limit of Fluctuations of Solutions of Wigner Equation
    Tomasz Komorowski
    Szymon Peszat
    Lenya Ryzhik
    Communications in Mathematical Physics, 2009, 292 : 479 - 510
  • [34] The Wigner equation in the presence of electromagnetic potentials
    Nedjalkov, Mihail
    Weinbub, Josef
    Ellinghaus, Paul
    Selberherr, Siegfried
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (04) : 888 - 893
  • [35] The Wigner equation in the presence of electromagnetic potentials
    Mihail Nedjalkov
    Josef Weinbub
    Paul Ellinghaus
    Siegfried Selberherr
    Journal of Computational Electronics, 2015, 14 : 888 - 893
  • [36] Boundary conditions and the Wigner equation solution
    Ivan Dimov
    Mihail Nedjalkov
    Jean-Michel Sellier
    Siegfried Selberherr
    Journal of Computational Electronics, 2015, 14 : 859 - 863
  • [37] Limit of Fluctuations of Solutions of Wigner Equation
    Komorowski, Tomasz
    Peszat, Szymon
    Ryzhik, Lenya
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (02) : 479 - 510
  • [38] Wigner lattice of ripplopolarons in a multielectron bubble in helium
    J. Tempere
    S.N. Klimin
    I.F. Silvera
    J.T. Devreese
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 32 : 329 - 338
  • [39] Comment on 'Wigner function for a particle in an infinite lattice'
    Bizarro, Joao P. S.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [40] Wigner lattice of ripplopolarons in a multielectron bubble in helium
    Tempere, J
    Klimin, SN
    Silvera, IF
    Devreese, JT
    EUROPEAN PHYSICAL JOURNAL B, 2003, 32 (03): : 329 - 338