Lattice Wigner equation

被引:6
|
作者
Solorzano, S. [1 ]
Mendoza, M. [1 ]
Succi, S. [2 ,3 ]
Herrmann, H. J. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Bldg Mat, Computat Phys Engn Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Harvard Univ, Inst Adv Computat Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
欧洲研究理事会;
关键词
BOLTZMANN-EQUATION; TRANSPORT-EQUATION; QUANTUM-MECHANICS; SPECTRAL METHOD; GAS AUTOMATA; EQUILIBRIUM; SIMULATIONS;
D O I
10.1103/PhysRevE.97.013308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Boundary conditions and the Wigner equation solution
    Dimov, Ivan
    Nedjalkov, Mihail
    Sellier, Jean-Michel
    Selberherr, Siegfried
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (04) : 859 - 863
  • [22] Analysis of a semidiscrete version of the Wigner equation
    Goudon, T
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) : 2007 - 2025
  • [23] A comparison of approaches for the solution of the Wigner equation
    Sellier, J. M.
    Nedjalkov, M.
    Dimov, I.
    Selberherr, S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 107 : 108 - 119
  • [24] THE ELECTROMAGNETIC WIGNER EQUATION FOR AN ELECTRON WITH SPIN
    ARNOLD, A
    STEINRUCK, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (06): : 793 - 815
  • [25] SIMPLE WIGNER-LANGEVIN EQUATION
    Sanin, Andrey L.
    MATERIALS PHYSICS AND MECHANICS, 2020, 45 (01): : 96 - 100
  • [26] A CLASS OF STOCHASTIC ALGORITHMS FOR THE WIGNER EQUATION
    Muscato, Orazio
    Wagner, Wolfgang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : A1483 - A1507
  • [27] Wigner solution of the quark gap equation
    Zhu-Fang Cui
    Shu-Sheng Xu
    Bo-Lin Li
    An Sun
    Jing-Bo Zhang
    Hong-Shi Zong
    The European Physical Journal C, 2018, 78
  • [28] AN OPTIMAL CONTROL PROBLEM FOR THE WIGNER EQUATION
    Morandi, Omar
    Rotundo, Nella
    Borzi, Alfio
    Barletti, Luigi
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (02) : 387 - 411
  • [29] A Note on Wigner Functions and *-Genvalue Equation
    JING Si-Cong LIN Bing-Sheng Department of Modern Physics
    Communications in Theoretical Physics, 2009, 51 (04) : 605 - 608
  • [30] A discrete formulation of the Wigner transport equation
    Kim, Kyoung-Youm
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (11)