Lattice Wigner equation

被引:6
|
作者
Solorzano, S. [1 ]
Mendoza, M. [1 ]
Succi, S. [2 ,3 ]
Herrmann, H. J. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Bldg Mat, Computat Phys Engn Mat, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] CNR, Ist Applicaz Calcolo, Via Taurini 19, I-00185 Rome, Italy
[3] Harvard Univ, Inst Adv Computat Sci, 29 Oxford St, Cambridge, MA 02138 USA
基金
欧洲研究理事会;
关键词
BOLTZMANN-EQUATION; TRANSPORT-EQUATION; QUANTUM-MECHANICS; SPECTRAL METHOD; GAS AUTOMATA; EQUILIBRIUM; SIMULATIONS;
D O I
10.1103/PhysRevE.97.013308
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] STABILITY OF THE WIGNER ELECTRON CRYSTAL ON THE PEROVSKITE LATTICE
    ZUCKER, IJ
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (15) : 2595 - 2596
  • [42] Wigner-Weyl formalism for the lattice models
    Suleymanov, Michael
    Zubkov, Mikhail
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (25):
  • [43] Geometry induced defects in a confined Wigner lattice
    Peeters, FM
    Kong, MH
    Partoens, B
    DUSTY PLASMAS IN THE NEW MILLENNIUM, 2002, 649 : 192 - 195
  • [44] MELTING OF 2-DIMENSIONAL WIGNER LATTICE
    THOULESS, DJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (06): : L189 - L190
  • [45] Lattice Approach to Wigner-Type Theorems
    Georges Chevalier
    International Journal of Theoretical Physics, 2005, 44 : 1905 - 1915
  • [46] Lattice approach to Wigner-type theorems
    Chevalier, G
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (11) : 1905 - 1915
  • [47] Is the Moyal equation for the Wigner function a quantum analogue of the Liouville equation?
    Perepelkin, E. E.
    Sadovnikov, B., I
    Inozemtseva, N. G.
    Burlakov, E., V
    Afonin, P., V
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (09):
  • [48] Semi-spectral method for the Wigner equation
    Furtmaier, O.
    Succi, S.
    Mendoza, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 : 1015 - 1036
  • [49] Orthogonality preserving property, Wigner equation, and stability
    Chmielinski, Jacek
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [50] Wigner transport equation with finite coherence length
    Carlo Jacoboni
    Paolo Bordone
    Journal of Computational Electronics, 2014, 13 : 257 - 263