The Wigner equation in the presence of electromagnetic potentials

被引:0
|
作者
Mihail Nedjalkov
Josef Weinbub
Paul Ellinghaus
Siegfried Selberherr
机构
[1] TU Wien,Institute for Microelectronics
来源
关键词
Wigner function; Electromagnetic potentials; Gauge transform;
D O I
暂无
中图分类号
学科分类号
摘要
An analysis of the possible formulations of the Wigner equation under a general gauge for the electric field is presented with an emphasis on the computational aspects of the problem. The numerical peculiarities of those formulations enable alternative computational strategies based on existing numerical methods applied in the Wigner formalism, such as finite difference or stochastic particle methods. The phase space formulation of the problem along with certain relations to classical mechanics offers an insight about the role of the gauge transforms in quantum mechanics.
引用
收藏
页码:888 / 893
页数:5
相关论文
共 50 条
  • [1] The Wigner equation in the presence of electromagnetic potentials
    Nedjalkov, Mihail
    Weinbub, Josef
    Ellinghaus, Paul
    Selberherr, Siegfried
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (04) : 888 - 893
  • [2] THE ELECTROMAGNETIC WIGNER EQUATION FOR AN ELECTRON WITH SPIN
    ARNOLD, A
    STEINRUCK, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (06): : 793 - 815
  • [3] THE GAUSSIAN BEAM METHOD FOR THE WIGNER EQUATION WITH DISCONTINUOUS POTENTIALS
    Yin, Dongsheng
    Tang, Min
    Jin, Shi
    [J]. INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 1051 - 1074
  • [4] Wigner equation of motion for time-dependent potentials
    Galleani, L
    Cohen, L
    [J]. JOURNAL OF MODERN OPTICS, 2002, 49 (3-4) : 561 - 569
  • [5] Analog of the Wigner-Moyal equation for the electromagnetic field
    Mendonça, JT
    Tsintsadze, NL
    [J]. PHYSICAL REVIEW E, 2000, 62 (03) : 4276 - 4282
  • [6] Comment on 'Wigner equation of motion for time-dependent potentials'
    Besieris, IM
    Davis, BA
    [J]. JOURNAL OF MODERN OPTICS, 2003, 50 (14) : 2271 - 2273
  • [7] A general gauge for the electromagnetic potentials and the continuity equation
    Redzic, D. V.
    [J]. EUROPEAN JOURNAL OF PHYSICS, 2016, 37 (06)
  • [8] Wigner equation for general electromagnetic fields: The Weyl-Stratonovich transform
    Nedjalkov, M.
    Weinbub, J.
    Ballicchia, M.
    Selberherr, S.
    Dimov, I
    Ferry, D. K.
    [J]. PHYSICAL REVIEW B, 2019, 99 (01)
  • [9] Solving the Wigner equation with signed particle Monte Carlo for chemically relevant potentials
    Wang, Yu
    Simine, Lena
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (03):
  • [10] Exact solution of the Dirac equation in the presence of pseudoscalar potentials
    Villalba, VM
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1997, 112 (01): : 109 - 116