A discrete adapted hierarchical basis solver for radial basis function interpolation

被引:6
|
作者
Castrillon-Candas, Julio E. [1 ]
Li, Jun [2 ]
Eijkhout, Victor [3 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
[2] Schlumberger, Houston, TX 77056 USA
[3] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA
关键词
Radial basis function; Interpolation; Hierarchical basis; Integral equations; Fast summation methods; Stable completion; Lifting; Generalized least squares; Best linear unbiased estimator; SCATTERED-DATA INTERPOLATION; SPARSE REPRESENTATION; BASES; RECONSTRUCTION; DECOMPOSITION; ALGORITHM; EQUATIONS; GMRES;
D O I
10.1007/s10543-012-0397-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we develop a discrete Hierarchical Basis (HB) to efficiently solve the Radial Basis Function (RBF) interpolation problem with variable polynomial degree. The HB forms an orthogonal set and is adapted to the kernel seed function and the placement of the interpolation nodes. Moreover, this basis is orthogonal to a set of polynomials up to a given degree defined on the interpolating nodes. We are thus able to decouple the RBF interpolation problem for any degree of the polynomial interpolation and solve it in two steps: (1) The polynomial orthogonal RBF interpolation problem is efficiently solved in the transformed HB basis with a GMRES iteration and a diagonal (or block SSOR) preconditioner. (2) The residual is then projected onto an orthonormal polynomial basis. We apply our approach on several test cases to study its effectiveness.
引用
收藏
页码:57 / 86
页数:30
相关论文
共 50 条
  • [31] Gaussian Radial Basis Function interpolation in vertical deformation analysis
    Khalili, Mohammad Amin
    Voosoghi, Behzad
    [J]. GEODESY AND GEODYNAMICS, 2021, 12 (03) : 218 - 228
  • [32] RADIAL BASIS FUNCTION INTERPOLATION IN SOBOLEV SPACES AND ITS APPLICATIONS
    Manping Zhang (School of Mathematical Sciences
    Institute of Computational Mathematics
    [J]. Journal of Computational Mathematics, 2007, (02) : 201 - 210
  • [33] Polynomials and potential theory for Gaussian radial basis function interpolation
    Platte, RB
    Driscoll, TA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) : 750 - 766
  • [34] Constructive approximate interpolation for real functions by the radial basis function
    Han, Xuli
    Amara, Camara
    Liu, Xinru
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 342 - 345
  • [35] Rational radial basis function interpolation with applications to antenna design
    Jakobsson, Stefan
    Andersson, Bjorn
    Edelvik, Fredrik
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) : 889 - 904
  • [36] Numerical method of aeroelasticity based on radial basis function interpolation
    Lin, Yanzhong
    Chen, Bing
    Xu, Xu
    [J]. Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (07): : 953 - 958
  • [37] Matching parameter estimation by using the radial basis function interpolation
    Fuji, Y.
    Abe, Y.
    Iiguni, Y.
    [J]. IET IMAGE PROCESSING, 2012, 6 (04) : 407 - 416
  • [38] Adaptive radial basis function interpolation using an error indicator
    Qi Zhang
    Yangzhang Zhao
    Jeremy Levesley
    [J]. Numerical Algorithms, 2017, 76 : 441 - 471
  • [39] Gaussian Radial Basis Function interpolation in vertical deformation analysis
    Mohammad Amin Khalili
    Behzad Voosoghi
    [J]. Geodesy and Geodynamics, 2021, 12 (03) : 218 - 228
  • [40] Adaptive radial basis function interpolation using an error indicator
    Zhang, Qi
    Zhao, Yangzhang
    Levesley, Jeremy
    [J]. NUMERICAL ALGORITHMS, 2017, 76 (02) : 441 - 471