A discrete adapted hierarchical basis solver for radial basis function interpolation

被引:6
|
作者
Castrillon-Candas, Julio E. [1 ]
Li, Jun [2 ]
Eijkhout, Victor [3 ]
机构
[1] King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
[2] Schlumberger, Houston, TX 77056 USA
[3] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78712 USA
关键词
Radial basis function; Interpolation; Hierarchical basis; Integral equations; Fast summation methods; Stable completion; Lifting; Generalized least squares; Best linear unbiased estimator; SCATTERED-DATA INTERPOLATION; SPARSE REPRESENTATION; BASES; RECONSTRUCTION; DECOMPOSITION; ALGORITHM; EQUATIONS; GMRES;
D O I
10.1007/s10543-012-0397-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we develop a discrete Hierarchical Basis (HB) to efficiently solve the Radial Basis Function (RBF) interpolation problem with variable polynomial degree. The HB forms an orthogonal set and is adapted to the kernel seed function and the placement of the interpolation nodes. Moreover, this basis is orthogonal to a set of polynomials up to a given degree defined on the interpolating nodes. We are thus able to decouple the RBF interpolation problem for any degree of the polynomial interpolation and solve it in two steps: (1) The polynomial orthogonal RBF interpolation problem is efficiently solved in the transformed HB basis with a GMRES iteration and a diagonal (or block SSOR) preconditioner. (2) The residual is then projected onto an orthonormal polynomial basis. We apply our approach on several test cases to study its effectiveness.
引用
收藏
页码:57 / 86
页数:30
相关论文
共 50 条
  • [21] Nonlinear image interpolation by radial basis function networks
    Yasukawa, M
    Ikeguchi, T
    Takagi, M
    Matozaki, T
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1199 - 1202
  • [22] Interpolation capability of the periodic radial basis function network
    Abe, Y.
    Iiguni, Y.
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (06): : 785 - 794
  • [23] Mesh deformation based on radial basis function interpolation
    de Boer, A.
    van der Schoot, M. S.
    Bijl, H.
    COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 784 - 795
  • [24] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309
  • [25] Radial basis function interpolation in moving mesh technique
    Lin, Yanzhong
    Chen, Bing
    Xu, Xu
    Jisuan Wuli/Chinese Journal of Computational Physics, 2012, 29 (02): : 191 - 197
  • [26] Hierarchical structure for function approximation using radial basis function
    Awad, M.
    Pomares, H.
    Rojas, I.
    Herrera, L.J.
    Guillen, A.
    Valenzuela, O.
    WSEAS Transactions on Mathematics, 2006, 5 (01) : 75 - 80
  • [27] Application of Radial Basis Function Network for Spatial Precipitation Interpolation
    Luo, Xian
    Xu, Youpeng
    Xu, Jintao
    2010 18TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS, 2010,
  • [28] Controlling Flock Through Normalized Radial Basis Function Interpolation
    Sung, Mankyu
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNOLOGIES AND ENGINEERING SYSTEMS (ICITES2014), 2016, 345 : 445 - 451
  • [29] On power functions and error estimates for radial basis function interpolation
    Light, W
    Wayne, H
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) : 245 - 266
  • [30] Fast radial basis function interpolation with Gaussians by localization and iteration
    Torres, Claudio E.
    Barba, L. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 4976 - 4999