Gaussian Radial Basis Function interpolation in vertical deformation analysis

被引:2
|
作者
Khalili, Mohammad Amin [1 ]
Voosoghi, Behzad [1 ]
机构
[1] KN Toosi Univ Technol, Fac Geodesy & Geomat Engn, Dept Geodesy, Tehran 1969764499, Iran
关键词
Interpolation accuracy; Gaussian Radial Basis Functions; Finite Element Method; InSAR; Vertical deformation; CURVATURE; SURFACE; SHAPE;
D O I
10.1016/j.geog.2021.02.004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In many deformation analyses, the partial derivatives at the interpolated scattered data points are required. In this paper, the Gaussian Radial Basis Functions (GRBF) is proposed for the interpolation and differentiation of the scattered data in the vertical deformation analysis. For the optimal selection of the shape parameter, which is crucial in the GRBF interpolation, two methods are used: the Power Gaussian Radial Basis Functions (PGRBF) and Leave One Out Cross Validation (LOOCV) (LGRBF). We compared the PGRBF and LGRBF to the traditional interpolation methods such as the Finite Element Method (FEM), polynomials, Moving Least Squares (MLS), and the usual GRBF in both the simulated and actual Interferometric Synthetic Aperture Radar (InSAR) data. The estimated results showed that the surface interpolation accuracy was greatly improved by LGRBF and PGRBF methods in comparison withFEM, polynomial, and MLS methods. Finally, LGRBF and PGRBF interpolation methods are used to compute invariant vertical deformation parameters, i.e., changes in Gaussian and mean Curvatures in the Groningen area in the North of Netherlands. (C) 2021 Editorial office of Geodesy and Geodynamics. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
引用
收藏
页码:218 / 228
页数:11
相关论文
共 50 条
  • [1] Gaussian Radial Basis Function interpolation in vertical deformation analysis
    Mohammad Amin Khalili
    Behzad Voosoghi
    [J]. Geodesy and Geodynamics, 2021, 12 (03) : 218 - 228
  • [2] Image Deformation using Radial Basis Function Interpolation
    Kwon, Jung Hye
    Lee, Byung Gook
    Yoon, Jungho
    Lee, JoonJae
    [J]. WSCG 2009, POSTER PROCEEDINGS, 2009, : 9 - +
  • [3] Mesh deformation based on radial basis function interpolation
    de Boer, A.
    van der Schoot, M. S.
    Bijl, H.
    [J]. COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 784 - 795
  • [4] Polynomials and potential theory for Gaussian radial basis function interpolation
    Platte, RB
    Driscoll, TA
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) : 750 - 766
  • [5] Analysis of radial basis function interpolation approach
    Zou You-Long
    Hu Fa-Long
    Zhou Can-Can
    Li Chao-Liu
    Dunn Keh-Jim
    [J]. APPLIED GEOPHYSICS, 2013, 10 (04) : 397 - 410
  • [6] An error analysis for radial basis function interpolation
    Michael J. Johnson
    [J]. Numerische Mathematik, 2004, 98 : 675 - 694
  • [7] An error analysis for radial basis function interpolation
    Johnson, MJ
    [J]. NUMERISCHE MATHEMATIK, 2004, 98 (04) : 675 - 694
  • [8] Analysis of radial basis function interpolation approach
    You-Long Zou
    Fa-Long Hu
    Can-Can Zhou
    Chao-Liu Li
    Keh-Jim Dunn
    [J]. Applied Geophysics, 2013, 10 : 397 - 410
  • [9] OFDM Channel Estimation Based on Gaussian Radial Basis Function Interpolation
    Hoseinzade, M.
    Mohamedpour, K.
    Andargoli, S. M. H.
    Razaghi, H. Shokri
    [J]. 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS I-III, PROCEEDINGS,: UBIQUITOUS ICT CONVERGENCE MAKES LIFE BETTER!, 2009, : 9 - 13
  • [10] Spherical Scattered Data Quasi-interpolation by Gaussian Radial Basis Function
    Zhixiang CHEN
    Feilong CAO
    [J]. Chinese Annals of Mathematics,Series B, 2015, 36 (03) : 401 - 412