Matching parameter estimation by using the radial basis function interpolation

被引:3
|
作者
Fuji, Y. [1 ]
Abe, Y. [1 ]
Iiguni, Y. [1 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
关键词
IMAGE REGISTRATION; SUBPIXEL REGISTRATION; TRANSLATION; ROTATION;
D O I
10.1049/iet-ipr.2010.0320
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A matching parameter estimation method with subpixel accuracy is derived by using the radial basis function (RBF) interpolation. This method reconstructs two analogue images from two given digital images by the RBF, and then minimises a non-linear cost function by the steepest-descent algorithm to estimate translation, rotation, scaling factor and intensity change between the two analogue images. The RBF provides accurate interpolation, resulting in accurate estimation. A Gaussian weighting function is introduced into the cost function to provide a local estimate within a region of interest (ROC). Then double integrals included in the cost function are analytically computed and the computational complexity is significantly reduced by exploiting the property that the Gaussian function decays rapidly. When the matching parameters are not constant over the whole image, or equivalently, the ROC is set to be small, the proposed method is better than the conventional phase correlation method in estimation accuracy.
引用
收藏
页码:407 / 416
页数:10
相关论文
共 50 条
  • [1] Rotorcraft parameter estimation using radial basis function neural network
    Kumar, Rajan
    Ganguli, Ranjan
    Omkar, S. N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 584 - 597
  • [2] Parameter estimation for stiff equations of biosystems using radial basis function networks
    Yoshiya Matsubara
    Shinichi Kikuchi
    Masahiro Sugimoto
    Masaru Tomita
    [J]. BMC Bioinformatics, 7
  • [3] Parameter Estimation Using a Radial Basis Function Network for Synthetic Aperture Radars
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    [J]. 2018 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT2018), 2018,
  • [4] Parameter estimation for stiff equations of biosystems using radial basis function networks
    Matsubara, Yoshiya
    Kikuchi, Shinichi
    Sugimoto, Masahiro
    Tomita, Masaru
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [5] Image Deformation using Radial Basis Function Interpolation
    Kwon, Jung Hye
    Lee, Byung Gook
    Yoon, Jungho
    Lee, JoonJae
    [J]. WSCG 2009, POSTER PROCEEDINGS, 2009, : 9 - +
  • [6] Referenceless Thermometry using Radial Basis Function Interpolation
    Agnello, Luca
    Militello, Carmelo
    Gagliardo, Cesare
    Vitabile, Salvatore
    [J]. 2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [7] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309
  • [8] OFDM Channel Estimation Based on Gaussian Radial Basis Function Interpolation
    Hoseinzade, M.
    Mohamedpour, K.
    Andargoli, S. M. H.
    Razaghi, H. Shokri
    [J]. 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, VOLS I-III, PROCEEDINGS,: UBIQUITOUS ICT CONVERGENCE MAKES LIFE BETTER!, 2009, : 9 - 13
  • [9] An algorithm for selecting a good value for the parameter c in radial basis function interpolation
    Shmuel Rippa
    [J]. Advances in Computational Mathematics, 1999, 11 : 193 - 210
  • [10] An algorithm for selecting a good value for the parameter c in radial basis function interpolation
    Rippa, S
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) : 193 - 210