Parameter Estimation Using a Radial Basis Function Network for Synthetic Aperture Radars

被引:0
|
作者
Chen, Tao [1 ]
Ding, Yongfei [1 ]
Pang, Ruifan [1 ]
Gong, Cheng [1 ]
Xu, Dinghai [1 ]
Zhang, Hengyang [2 ]
机构
[1] Aviat Ind China AVIC, Key Lab Av Integrat, Shanghai, Peoples R China
[2] Airforce Engn Univ, Inst Nav & Informat, Xian, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we consider a novel algorithm of Doppler parameter estimation for synthetic aperture radars (SAR). This algorithm takes advantages from artificial neural networks. By proper training, a Radial Basis Function (RBF) network may provide accurate performance. Frequency Domain data are used to generate the estimates. The parameters include Doppler centroid and Doppler frequency rate. Both computer simulation and experiment data demonstrate that a RBF network is powerful to SAR parameter estimation.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Rotorcraft parameter estimation using radial basis function neural network
    Kumar, Rajan
    Ganguli, Ranjan
    Omkar, S. N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) : 584 - 597
  • [2] Accurate Parameter Estimation Using Rotational Invariance Techniques for Synthetic Aperture Radars
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4363 - 4366
  • [3] Parameter Estimation Using Nonlinear Least Square Approach for Synthetic Aperture Radars
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    [J]. 2015 IEEE 6TH INTERNATIONAL SYMPOSIUM ON MICROWAVE, ANTENNA, PROPAGATION, AND EMC TECHNOLOGIES (MAPE), 2015, : 726 - 729
  • [4] DOPPLER PARAMETER-ESTIMATION FOR SPACEBORNE SYNTHETIC-APERTURE RADARS
    LI, FK
    HELD, DN
    CURLANDER, JC
    WU, C
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1985, 23 (01): : 47 - 56
  • [5] Matching parameter estimation by using the radial basis function interpolation
    Fuji, Y.
    Abe, Y.
    Iiguni, Y.
    [J]. IET IMAGE PROCESSING, 2012, 6 (04) : 407 - 416
  • [6] Parameter Estimation Using Nonlinear Kalman Filters for Motion Compensation of Airborne Synthetic Aperture Radars
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    [J]. 9TH INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY PROCEEDINGS, VOL. 1, (ICMMT 2016), 2016, : 524 - 526
  • [7] Aerodynamic Parameter Estimation using Two-Stage Radial Basis Function Neural Network
    Singh, Dhan Jeet
    Vermal, Nischal K.
    Ghosh, A. K.
    Sanwale, Jitu
    Malagaudanavar, Appasaheb
    [J]. 2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 461 - 467
  • [8] Radial basis function neural network predictor for parameter estimation in chaotic noise
    Xie, Hongmei
    Feng, Xiaoyi
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 135 - +
  • [9] Estimation of impact point using Radial Basis Function Network
    Komatsuzaki, Toshihiko
    Iwata, Yoshio
    Hongo, Tetsuyuki
    [J]. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2011, 77 (784): : 4521 - 4533
  • [10] Adaptive DOA estimation using a radial basis function network
    Mochida, E
    Iiguni, Y
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2005, 88 (09): : 11 - 20