Rotorcraft parameter estimation using radial basis function neural network

被引:21
|
作者
Kumar, Rajan [1 ]
Ganguli, Ranjan [1 ]
Omkar, S. N. [1 ]
机构
[1] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India
关键词
System identification; Parameter estimation; Neural networks; Radial basis function; Numerical differentiation; TIME-VARYING DELAYS; IDENTIFICATION; STABILITY;
D O I
10.1016/j.amc.2010.01.081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Increased emphasis on rotorcraft performance and operational capabilities has resulted in accurate computation of aerodynamic stability and control parameters. System identification is one such tool in which the model structure and parameters such as aerodynamic stability and control derivatives are derived. In the present work, the rotorcraft aerodynamic parameters are computed using radial basis function neural networks (RBFN) in the presence of both state and measurement noise. The effect of presence of outliers in the data is also considered. RBFN is found to give superior results compared to finite difference derivatives for noisy data. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:584 / 597
页数:14
相关论文
共 50 条
  • [1] Aerodynamic Parameter Estimation using Two-Stage Radial Basis Function Neural Network
    Singh, Dhan Jeet
    Vermal, Nischal K.
    Ghosh, A. K.
    Sanwale, Jitu
    Malagaudanavar, Appasaheb
    [J]. 2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 461 - 467
  • [2] Radial basis function neural network predictor for parameter estimation in chaotic noise
    Xie, Hongmei
    Feng, Xiaoyi
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 135 - +
  • [3] Deriving Stellar Parameter Using Radial Basis Function Neural Network
    Zhao, Jingkun
    Luo, Ali
    Zhao, Gang
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 3, PROCEEDINGS, 2008, : 150 - 154
  • [4] Estimation of Carrageenan concentration using radial basis function neural network
    Krishnaiah, D
    Bono, A
    Yaacob, S
    Pandiyan, P
    Karthikeyan, C
    Prasad, DMR
    [J]. ISAS/CITSA 2004: INTERNATIONAL CONFERENCE ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS AND APPLICATIONS AND 10TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS ANALYSIS AND SYNTHESIS, VOL 2, PROCEEDINGS: COMMUNICATIONS, INFORMATION AND CONTROL SYSTEMS, TECHNOLOGIES AND APPLICATIONS, 2004, : 173 - 177
  • [5] Parameter Estimation Using a Radial Basis Function Network for Synthetic Aperture Radars
    Chen, Tao
    Ding, Yongfei
    Pang, Ruifan
    Gong, Cheng
    Xu, Dinghai
    Zhang, Hengyang
    [J]. 2018 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT2018), 2018,
  • [6] Radial basis function network estimation of neural activity fields
    Das, S
    Anderson, RW
    Keller, EL
    [J]. IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1559 - 1563
  • [7] Matching parameter estimation by using the radial basis function interpolation
    Fuji, Y.
    Abe, Y.
    Iiguni, Y.
    [J]. IET IMAGE PROCESSING, 2012, 6 (04) : 407 - 416
  • [8] Channel Estimation Using Radial Basis Function Neural Network in OFDM–IDMA System
    Şakir Şimşir
    Necmi Taşpınar
    [J]. Wireless Personal Communications, 2015, 85 : 1883 - 1893
  • [9] Adaptive control of track tension estimation using radial basis function neural network
    Pingxin Wang
    Xiaoting Rui
    Hailong Yu
    Guoping Wang
    Dongyang Chen
    [J]. Defence Technology., 2021, 17 (04) - 1433
  • [10] Adaptive control of track tension estimation using radial basis function neural network
    Ping-xin Wang
    Xiao-ting Rui
    Hai-long Yu
    Guo-ping Wang
    Dong-yang Chen
    [J]. Defence Technology, 2021, (04) : 1423 - 1433