Investigation of polycapillary half lenses for quantitative confocal micro-X-ray fluorescence analysis

被引:5
|
作者
Iro, Michael [1 ]
Ingerle, Dieter [1 ]
Radtke, Martin [2 ]
Buzanich, Ana Guilherme [2 ]
Kregsamer, Peter [1 ]
Streli, Christina [1 ]
机构
[1] TU Wien, Atominst, Stadionallee 2, A-1020 Vienna, Austria
[2] Bundesanstalt Mat Forsch & Prufung BAM, Richard Willstatter Str 11, D-12489 Berlin, Germany
关键词
polycapillary optics; confocal micro-XRF; X-ray fluorescence; 3D elemental analysis; X-ray optics;
D O I
10.1107/S1600577522009699
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The use of polycapillary optics in confocal micro-X-ray fluorescence analysis (CMXRF) enables the destruction-free 3D investigation of the elemental composition of samples. The energy-dependent transmission properties, concerning intensity and spatial beam propagation of three polycapillary half lenses, which are vital for the quantitative interpretation of such CMXRF measurements, are investigated in a monochromatic confocal laboratory setup at the Atominstitut of TU Wien, and a synchrotron setup on the BAMline beamline at the BESSY II Synchrotron, Helmholtz-Zentrum-Berlin. The empirically established results, concerning the intensity of the transmitted beam, are compared with theoretical values calculated with the polycap software package and a newly presented analytical model for the transmission function. The resulting form of the newly modelled energy-dependent transmission function is shown to be in good agreement with Monte Carlo simulated results for the complete energy regime, as well as the empirically established results for the energy regime between 6 keV and 20 keV. An analysis of possible fabrication errors was conducted via pinhole scans showing only minor fabrication errors in two of the investigated polycapillary optics. The energy-dependent focal spot size of the primary polycapillary was investigated in the laboratory via the channel-wise evaluation of knife-edge scans. Experimental results are compared with data given by the manufacturer as well as geometric estimations for the minimal focal spot size. Again, the resulting measurement points show a trend in agreement with geometrically estimated results and manufacturer data.
引用
收藏
页码:1376 / 1384
页数:9
相关论文
共 50 条
  • [1] Quantitative analysis of single aerosol particles with confocal micro-X-ray fluorescence spectrometer
    Sun, Tianxi
    Liu, Zhiguo
    Li, Yude
    Lin, Xiaoyan
    Wang, Guangfu
    Zhu, Guanghua
    Xu, Qing
    Luo, Ping
    Pan, Qiuli
    Liu, Hui
    Ding, Xunliang
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 622 (01): : 295 - 297
  • [2] Confocal micro-x-ray fluorescence spectrometer for light element analysis
    Smolek, S.
    Pemmer, B.
    Foelser, M.
    Streli, C.
    Wobrauschek, P.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (08):
  • [3] A New Type of Portable Micro-X-Ray Fluorescence Spectrometer with Polycapillary Optics
    Duan Ze-ming
    Liu Jun
    Jiang Qi-li
    Pan Qiu-li
    Li Rong-wu
    Cheng Lin
    [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (01) : 303 - 309
  • [4] Confocal micro-X-ray fluorescence analysis for difference identification of ceramic samples
    Mori, Kazuaki
    Hourai, Takayuki
    Matsuyama, Tsugufumi
    Zhuo, Shangjun
    Tsuji, Kouichi
    [J]. ANALYTICAL SCIENCES, 2024, 40 (03) : 367 - 373
  • [5] Confocal micro-X-ray fluorescence analysis for difference identification of ceramic samples
    Kazuaki Mori
    Takayuki Hourai
    Tsugufumi Matsuyama
    Shangjun Zhuo
    Kouichi Tsuji
    [J]. Analytical Sciences, 2024, 40 : 367 - 373
  • [6] Elemental Imaging of Nail Sample by Confocal Micro-X-ray Fluorescence Analysis
    Urata, Taisei
    Matsuyama, Tsugufumi
    Inoue, Fumiyuki
    Tsuji, Kouichi
    [J]. BUNSEKI KAGAKU, 2023, 72 (06) : 217 - 225
  • [7] A monochromatic confocal micro-x-ray fluorescence (μXRF) spectrometer for the lab
    Ingerle, D.
    Swies, J.
    Iro, M.
    Wobrauschek, P.
    Streli, C.
    Hradil, K.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (12):
  • [8] Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography
    Cordes, Nikolaus L.
    Seshadri, Srivatsan
    Havrilla, George J.
    Yuan, Xiaoli
    Feser, Michael
    Patterson, Brian M.
    [J]. SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2015, 103 : 144 - 154
  • [9] Confocal micro-X-ray fluorescence spectroscopy with a liquid metal jet source
    Bauer, Leona
    Lindqvist, Malcolm
    Foerste, Frank
    Lundstroem, Ulf
    Hansson, Bjoern
    Thiel, Markus
    Bjeoumikhova, Semfira
    Groetzsch, Daniel
    Malzer, Wolfgang
    Kanngiesser, Birgit
    Mantouvalou, Ioanna
    [J]. JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2018, 33 (09) : 1552 - 1558
  • [10] Confocal micro-X-ray fluorescence spectroscopy with a liquid metal jet source
    [J]. Mantouvalou, Ioanna (ioanna.mantouvalou@tu-berlin.de), 1600, Royal Society of Chemistry (33):