Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold

被引:0
|
作者
Guedj, Vincent [1 ,2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse 3, Inst Univ France, F-31062 Toulouse 9, France
来源
关键词
METRICS; CURVATURE; ENERGY;
D O I
10.1007/978-3-319-00819-6_6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of these notes is to sketch the proof of the following result, due to Perelman and Tian-Zhu: on a Kahler-Einstein Fano manifold with discrete automorphism group, the normalized Kahler-Ricci flow converges smoothly to the unique Kahler-Einstein metric. We also explain an alternative approach due to Berman-Boucksom-Eyssidieux-Guedj-Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
引用
收藏
页码:299 / 333
页数:35
相关论文
共 50 条
  • [31] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [32] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [33] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [34] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [35] THE KAHLER-RICCI FLOW, HOLOMORPHIC VECTOR FIELDS AND FANO BUNDLES
    Shen, Xi Sisi
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6751 - 6768
  • [36] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [37] Hyperbolic Kahler-Ricci flow
    Xu Chao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3027 - 3036
  • [38] A modified Kahler-Ricci flow
    Zhang, Zhou
    MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [39] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188
  • [40] Monotonicity and Kahler-Ricci flow
    Ni, L
    GEOMETRIC EVOLUTION EQUATIONS, 2005, 367 : 149 - 165