The twisted Kahler-Ricci flow

被引:24
|
作者
Collins, Tristan C. [1 ]
Szekelyhidi, Gabor [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Notre Dame, Dept Math, South Bend, IN USA
关键词
SCALAR CURVATURE; METRICS;
D O I
10.1515/crelle-2014-0010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a generalization of the Kahler-Ricci flow, in which the Ricci form is twisted by a closed, non-negative (1, 1)-form. We show that when a twisted Kahler-Einstein metric exists, then this twisted flow converges exponentially. This generalizes a result of Perelman on the convergence of the Kahler-Ricci flow, and it builds on work of Tian-Zhu.
引用
收藏
页码:179 / 205
页数:27
相关论文
共 50 条
  • [1] On a twisted conical Kahler-Ricci flow
    Zhang, Yashan
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 69 - 98
  • [2] Isoperimetric inequality along the twisted Kahler-Ricci flow
    Fang, Shouwen
    Zheng, Tao
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 56 : 54 - 66
  • [3] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [4] Notes on Kahler-Ricci Flow
    Tian, Gang
    [J]. RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [5] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [6] Convergence of a Kahler-Ricci flow
    Sesum, N
    [J]. MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [7] On convergence of the Kahler-Ricci flow
    Munteanu, Ovidiu
    Szekelyhidi, Gabor
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (05) : 887 - 903
  • [8] Hyperbolic Kahler-Ricci flow
    Xu Chao
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3027 - 3036
  • [9] A modified Kahler-Ricci flow
    Zhang, Zhou
    [J]. MATHEMATISCHE ANNALEN, 2009, 345 (03) : 559 - 579
  • [10] An Introduction to the Kahler-Ricci Flow
    Song, Jian
    Weinkove, Ben
    [J]. INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 89 - 188