A modified Kahler-Ricci flow

被引:2
|
作者
Zhang, Zhou [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
MONGE-AMPERE EQUATION; ALGEBRAIC-VARIETIES; EINSTEIN METRICS; GENERAL TYPE; MANIFOLDS; CURVATURE;
D O I
10.1007/s00208-009-0365-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we study a Kahler-Ricci flow modified from the classic version. In the non-degenerate case, strong convergence at infinite time is achieved. The main focus should be on degenerate case, where some partial results are presented.
引用
收藏
页码:559 / 579
页数:21
相关论文
共 50 条
  • [1] On the convergence of a modified Kahler-Ricci flow
    Yuan, Yuan
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 281 - 289
  • [2] The Modified Cusp Kahler-Ricci Flow and Soliton
    Zhang, Pan
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) : 10402 - 10435
  • [3] Modified Kahler-Ricci flow on projective bundles
    Takahashi, Ryosuke
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 395 - 413
  • [4] On the convergence of the modified Kahler-Ricci flow and solitons
    Phong, D. H.
    Song, Jian
    Sturm, Jacob
    Weinkove, Ben
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (01) : 91 - 112
  • [5] Stability of Kahler-Ricci Flow
    Chen, Xiuxiong
    Li, Haozhao
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 306 - 334
  • [6] Notes on Kahler-Ricci Flow
    Tian, Gang
    RICCI FLOW AND GEOMETRIC APPLICATIONS, 2016, 2166 : 105 - 136
  • [7] Regularity of the Kahler-Ricci flow
    Tian, Gang
    Zhang, Zhenlei
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (15-16) : 635 - 638
  • [8] The twisted Kahler-Ricci flow
    Collins, Tristan C.
    Szekelyhidi, Gabor
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 716 : 179 - 205
  • [9] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [10] Hyperbolic Kahler-Ricci flow
    Xu Chao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (11) : 3027 - 3036