The goal of these notes is to sketch the proof of the following result, due to Perelman and Tian-Zhu: on a Kahler-Einstein Fano manifold with discrete automorphism group, the normalized Kahler-Ricci flow converges smoothly to the unique Kahler-Einstein metric. We also explain an alternative approach due to Berman-Boucksom-Eyssidieux-Guedj-Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Tian, Gang
Zhang, Zhenlei
论文数: 0引用数: 0
h-index: 0
机构:
Capital Normal Univ, Sch Math, Beijing 100048, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Guo, Bin
Phong, Duong H.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Phong, Duong H.
Song, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Song, Jian
Sturm, Jacob
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAColumbia Univ, Dept Math, New York, NY 10027 USA
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Liu, Jiawei
Zhang, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China