A Distributed Weighted Possibilistic c-Means Algorithm for Clustering Incomplete Big Sensor Data

被引:14
|
作者
Zhang, Qingchen [1 ]
Chen, Zhikui [1 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Liaoning, Peoples R China
关键词
COVERAGE; INTERNET; THINGS;
D O I
10.1155/2014/430814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Possibilistic c-means clustering algorithm(PCM) has emerged as an important technique for pattern recognition and data analysis. Owning to the existence of many missing values, PCM is difficult to produce a good clustering result in real time. The paper proposes a distributed weighted possibillistic c-means clustering algorithm (DWPCM), which works in three steps. First the paper applies the partial distance strategy to PCM (PDPCM) for calculating the distance between any two objects in the incomplete data set. Further, a weighted PDPCM algorithm (WPCM) is designed to reduce the corruption of missing values by assigning low weight values to incomplete data objects. Finally, to improve the cluster speed of WPCM, the cloud computing technology is used to optimize the WPCM algorithm by designing the distributed weighted possibilistic c-means clustering algorithm (DWPCM) based on MapReduce. The experimental results demonstrate that the proposed algorithms can produce an appropriate partition efficiently for incomplete big sensor data.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Weighted Fuzzy c-Means Clustering Algorithm for Incomplete Big Sensor Data
    Li, Peng
    Chen, Zhikui
    Hu, Yueming
    Leng, Yonglin
    Li, Qiucen
    [J]. WIRELESS SENSOR NETWORKS (CWSN 2017), 2018, 812 : 55 - 63
  • [2] Secure weighted possibilistic c-means algorithm on cloud for clustering big data
    Zhang, Qingchen
    Yang, Laurence T.
    Castiglione, Arcangelo
    Chen, Zhikui
    Li, Peng
    [J]. INFORMATION SCIENCES, 2019, 479 : 515 - 525
  • [3] A weighted kernel possibilistic c-means algorithm based on cloud computing for clustering big data
    Zhang, Qingchen
    Chen, Zhikui
    [J]. INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2014, 27 (09) : 1378 - 1391
  • [4] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    [J]. ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377
  • [5] A High-Order Possibilistic C-Means Algorithm for Clustering Incomplete Multimedia Data
    Zhang, Qingchen
    Yang, Laurence T.
    Chen, Zhikui
    Xia, Feng
    [J]. IEEE SYSTEMS JOURNAL, 2017, 11 (04): : 2160 - 2169
  • [6] Weighted possibilistic c-means clustering algorithms
    Schneider, A
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 176 - 180
  • [7] An Unsupervised Possibilistic C-Means Clustering Algorithm with Data Reduction
    Hu, Yating
    Qu, Fuheng
    Wen, Changji
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 29 - 33
  • [8] Distributed C-Means Data Clustering Algorithm
    Oliva, Gabriele
    Setola, Roberto
    Hadjicostis, Christoforos N.
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4396 - 4401
  • [9] Suppressed possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    Lan, Rong
    [J]. APPLIED SOFT COMPUTING, 2019, 80 : 845 - 872
  • [10] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530