A Distributed Weighted Possibilistic c-Means Algorithm for Clustering Incomplete Big Sensor Data

被引:14
|
作者
Zhang, Qingchen [1 ]
Chen, Zhikui [1 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Liaoning, Peoples R China
关键词
COVERAGE; INTERNET; THINGS;
D O I
10.1155/2014/430814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Possibilistic c-means clustering algorithm(PCM) has emerged as an important technique for pattern recognition and data analysis. Owning to the existence of many missing values, PCM is difficult to produce a good clustering result in real time. The paper proposes a distributed weighted possibillistic c-means clustering algorithm (DWPCM), which works in three steps. First the paper applies the partial distance strategy to PCM (PDPCM) for calculating the distance between any two objects in the incomplete data set. Further, a weighted PDPCM algorithm (WPCM) is designed to reduce the corruption of missing values by assigning low weight values to incomplete data objects. Finally, to improve the cluster speed of WPCM, the cloud computing technology is used to optimize the WPCM algorithm by designing the distributed weighted possibilistic c-means clustering algorithm (DWPCM) based on MapReduce. The experimental results demonstrate that the proposed algorithms can produce an appropriate partition efficiently for incomplete big sensor data.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Interval-valued possibilistic fuzzy C-means clustering algorithm
    Ji, Zexuan
    Xia, Yong
    Sun, Quansen
    Cao, Guo
    [J]. FUZZY SETS AND SYSTEMS, 2014, 253 : 138 - 156
  • [42] Weighted and constrained possibilistic C-means clustering for online fault detection and isolation
    Bahrampour, Soheil
    Moshiri, Behzad
    Salahshoor, Karim
    [J]. APPLIED INTELLIGENCE, 2011, 35 (02) : 269 - 284
  • [43] Local search genetic algorithm-based possibilistic weighted fuzzy c-means for clustering mixed numerical and categorical data
    Thi Phuong Quyen Nguyen
    Kuo, R. J.
    Minh Duc Le
    Thi Cuc Nguyen
    Thi Huynh Anh Le
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 18059 - 18074
  • [44] Local search genetic algorithm-based possibilistic weighted fuzzy c-means for clustering mixed numerical and categorical data
    Thi Phuong Quyen Nguyen
    R. J. Kuo
    Minh Duc Le
    Thi Cuc Nguyen
    Thi Huynh Anh Le
    [J]. Neural Computing and Applications, 2022, 34 : 18059 - 18074
  • [45] PPHOPCM: Privacy-Preserving High-Order Possibilistic c-Means Algorithm for Big Data Clustering with Cloud Computing
    Zhang, Qingchen
    Yang, Laurence T.
    Chen, Zhikui
    Li, Peng
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (01) : 25 - 34
  • [46] Sparse possibilistic c-means clustering with Lasso
    Yang, Miin-Shen
    Benjamin, Josephine B. M.
    [J]. PATTERN RECOGNITION, 2023, 138
  • [47] Improved possibilistic C-means clustering algorithms
    Zhang, JS
    Leung, YW
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (02) : 209 - 217
  • [48] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    [J]. Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [49] Hybrid Fuzzy C-Means Clustering Algorithm Oriented to Big Data Realms
    Perez-Ortega, Joaquin
    Silvia Roblero-Aguilar, Sandra
    Nely Almanza-Ortega, Nelva
    Frausto Solis, Juan
    Zavala-Diaz, Crispin
    Hernandez, Yasmin
    Landero-Najera, Vanesa
    [J]. AXIOMS, 2022, 11 (08)
  • [50] A generalization of Possibilistic Fuzzy C-Means Method for Statistical Clustering of Data
    Azzouzi S.
    El-Mekkaoui J.
    Hjouji A.
    Khalfi A.E.L.
    [J]. International Journal of Circuits, Systems and Signal Processing, 2021, 15 : 1766 - 1780