A Distributed Weighted Possibilistic c-Means Algorithm for Clustering Incomplete Big Sensor Data

被引:14
|
作者
Zhang, Qingchen [1 ]
Chen, Zhikui [1 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Liaoning, Peoples R China
关键词
COVERAGE; INTERNET; THINGS;
D O I
10.1155/2014/430814
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Possibilistic c-means clustering algorithm(PCM) has emerged as an important technique for pattern recognition and data analysis. Owning to the existence of many missing values, PCM is difficult to produce a good clustering result in real time. The paper proposes a distributed weighted possibillistic c-means clustering algorithm (DWPCM), which works in three steps. First the paper applies the partial distance strategy to PCM (PDPCM) for calculating the distance between any two objects in the incomplete data set. Further, a weighted PDPCM algorithm (WPCM) is designed to reduce the corruption of missing values by assigning low weight values to incomplete data objects. Finally, to improve the cluster speed of WPCM, the cloud computing technology is used to optimize the WPCM algorithm by designing the distributed weighted possibilistic c-means clustering algorithm (DWPCM) based on MapReduce. The experimental results demonstrate that the proposed algorithms can produce an appropriate partition efficiently for incomplete big sensor data.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Possibilistic Rough Fuzzy C-Means Algorithm in Data Clustering and Image Segmentation
    Tripathy, B. K.
    Tripathy, Anurag
    Rajulu, Kosireddy Govinda
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 981 - 986
  • [22] An Edge-Cloud-Aided High-Order Possibilistic c-Means Algorithm for Big Data Clustering
    Bu, Fanyu
    Zhang, Qingchen
    Yang, Laurence T.
    Yu, Hang
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (12) : 3100 - 3109
  • [23] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [24] Alternative fuzzy-possibilistic c-means clustering algorithm
    Wu, Xiao-Hong
    Wu, Bin
    Zhou, Jian-Jiang
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 11 - 14
  • [25] Cutset-type possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    [J]. APPLIED SOFT COMPUTING, 2018, 64 : 401 - 422
  • [26] A generalized fuzzy-possibilistic c-means clustering algorithm
    Naghi, Mirtill-Boglarka
    Kovacs, Levente
    Szilagyi, Laszlo
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (02) : 404 - 431
  • [27] A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm
    Yang, Miin-Shen
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    [J]. IEEE ACCESS, 2018, 6 : 78308 - 78320
  • [28] Kernel fuzzy-possibilistic c-means clustering algorithm
    Wu, Xiao-Hong
    Zhou, Jian-Jiang
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 1712 - 1717
  • [29] A Self-tuning Possibilistic c-Means Clustering Algorithm
    Szilagyi, Laszlo
    Lefkovits, Szidonia
    Kucsvan, Zsolt Levente
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2018), 2018, 11144 : 255 - 266
  • [30] A possibilistic C-means clustering algorithm based on kernel methods
    Wu, Xiao-Hong
    [J]. 2006 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1-4: VOL 1: SIGNAL PROCESSING, 2006, : 2062 - 2066