MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS

被引:2
|
作者
Rustam [1 ]
Usman, Koredianto [1 ]
Kamaruddin, Mudyawati [2 ]
Chamidah, Dina [3 ]
Nopendri [4 ]
Saleh, Khaerudin [1 ]
Eliskar, Yulinda [1 ]
Marzuki, Ismail [5 ]
机构
[1] Telkom Univ, Sch Elect Engn, Dept Telecommun Engn, Jl Telekomunikasi 1 Dayeuh Kolot, Kabupaten Bandung 40257, Jawa Barat, Indonesia
[2] Univ Muhammadiyah Semarang, Fac Hlth Sci, Semarang, Jawa Tengah, Indonesia
[3] Univ Wijaya Kusuma Surabaya, Fac Language & Sci, Dept Biol Educ, Surabaya, Jawa Timur, Indonesia
[4] Telkom Univ, Sch Ind Engn, Dept Ind Engn, Jawa Barat, Indonesia
[5] Fajar Univ, Dept Chem Engn, Makassar, Sulawesi Selata, Indonesia
关键词
Incomplete data; fuzzy clustering; possibilistic clustering; missing values imputation; VALIDITY INDEX;
D O I
10.14311/AP.2021.61.0364
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A possibilistic fuzzy c-means (PFCM) algorithm is a reliable algorithm proposed to deal with the weaknesses associated with handling noise sensitivity and coincidence clusters in fuzzy c-means (FCM) and possibilistic c-means (PCM). However, the PFCM algorithm is only applicable to complete data sets. Therefore, this research modified the PFCM for clustering incomplete data sets to OCSPFCM and NPSPFCM with the performance evaluated based on three aspects, 1) accuracy percentage, 2) the number of iterations, and 3) centroid errors. The results showed that the NPSPFCM outperforms the OCSPFCM with missing values ranging from 5% - 30 % for all experimental data sets. Furthermore, both algorithms provide average accuracies between 97.75 %- 78.98 % and 98.86 %-92.49 %, respectively.
引用
收藏
页码:364 / 377
页数:14
相关论文
共 50 条
  • [1] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [2] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [3] Fuzzy C-means clustering algorithm based on incomplete data
    Jia, Zhiping
    Yu, Zhiqiang
    Zhang, Chenghui
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INFORMATION ACQUISITION, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2006, : 600 - 604
  • [4] A Robust Fuzzy c-Means Clustering Algorithm for Incomplete Data
    Li, Jinhua
    Song, Shiji
    Zhang, Yuli
    Li, Kang
    [J]. INTELLIGENT COMPUTING, NETWORKED CONTROL, AND THEIR ENGINEERING APPLICATIONS, PT II, 2017, 762 : 3 - 12
  • [5] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [6] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [7] Fuzzy c-means clustering of incomplete data
    Hathaway, RJ
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 735 - 744
  • [8] Possibilistic Rough Fuzzy C-Means Algorithm in Data Clustering and Image Segmentation
    Tripathy, B. K.
    Tripathy, Anurag
    Rajulu, Kosireddy Govinda
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 981 - 986
  • [9] A Distributed Weighted Possibilistic c-Means Algorithm for Clustering Incomplete Big Sensor Data
    Zhang, Qingchen
    Chen, Zhikui
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2014,
  • [10] A High-Order Possibilistic C-Means Algorithm for Clustering Incomplete Multimedia Data
    Zhang, Qingchen
    Yang, Laurence T.
    Chen, Zhikui
    Xia, Feng
    [J]. IEEE SYSTEMS JOURNAL, 2017, 11 (04): : 2160 - 2169