An Unsupervised Possibilistic C-Means Clustering Algorithm with Data Reduction

被引:0
|
作者
Hu, Yating [2 ]
Qu, Fuheng [1 ]
Wen, Changji [2 ]
机构
[1] Changchun Univ Sci & Tech, Sch Comp Sci & Technol, Changchun, Peoples R China
[2] Jilin Agr Univ, Coll Informat & Technol, Changchun, Peoples R China
关键词
possibilistic clustering; data reduction; cluster validity index; unsupervised clustering; VALIDITY INDEX; FUZZY CLUSTERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because of using the possibilistic partition to describe the data set, possibilistic clustering algorithm is more robust to noises than hard and fuzzy clustering algorithms. But calculating the membership matrix also makes it has a low efficiency. Moreover, the performance of possibilistic clustering may be degreased if the cluster number is set wrongly. In this paper, we proposed a new possibilistic clustering algorithm named unsupervised possibilistic c-means clustering algorithm with data reduction (UPCMDR) to improve the efficiency of possibilistic c-means clustering algorithm (PCM). In UPCMDR, data reduction technique is introduced to speed up the process of estimation of the cluster centers. A new clustering algorithm called weighted possibilistic c-means clustering algorithm is proposed to estimate the positions of centers of PCM accurately. The contrast experimental results with conventional algorithms show that UPCMDR has a relatively high efficiency, and can execute unsupervised clustering task when combining with the generalized cluster validity index.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 50 条
  • [1] A Fully-Unsupervised Possibilistic C-Means Clustering Algorithm
    Yang, Miin-Shen
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    [J]. IEEE ACCESS, 2018, 6 : 78308 - 78320
  • [2] Suppressed possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    Lan, Rong
    [J]. APPLIED SOFT COMPUTING, 2019, 80 : 845 - 872
  • [3] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [4] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [5] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [6] An enhanced possibilistic C-Means clustering algorithm EPCM
    Xie, Zhenping
    Wang, Shitong
    Chung, F. L.
    [J]. SOFT COMPUTING, 2008, 12 (06) : 593 - 611
  • [7] Generalized Adaptive Possibilistic C-Means Clustering Algorithm
    Xenaki, Spyridoula
    Koutroumbas, Konstantinos
    Rontogiannis, Athanasios
    [J]. 10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [8] An enhanced possibilistic C-Means clustering algorithm EPCM
    Zhenping Xie
    Shitong Wang
    F. L. Chung
    [J]. Soft Computing, 2008, 12 : 593 - 611
  • [9] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [10] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    [J]. ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377