Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach

被引:24
|
作者
Parpas, Panos [1 ]
Ustun, Berk [2 ]
Webster, Mort [3 ]
Quang Kha Tran [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp Sci, London SW7 2AZ, England
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] MIT, Engn Syst Div, Cambridge, MA 02139 USA
[4] Univ London Imperial Coll Sci Technol & Med, Dept Comp Sci, London SW7 2AZ, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Benders' decomposition; cutting plane algorithms; stochastic optimization; stochastic programming; importance sampling; variance reduction; Monte Carlo; Markov chain Monte Carlo; kernel density estimation; nonparametric; STOPPING RULES; OPTIMIZATION; DECOMPOSITION; REDUCTION;
D O I
10.1287/ijoc.2014.0630
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Stochastic programming models are large-scale optimization problems that are used to facilitate decision making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it requires the evaluation of a multidimensional integral whose integrand is an optimization problem. In turn, the recourse function has to be estimated using techniques such as scenario trees or Monte Carlo methods, both of which require numerous functional evaluations to produce accurate results for large-scale problems with multiple periods and high-dimensional uncertainty. In this work, we introduce an importance sampling framework for stochastic programming that can produce accurate estimates of the recourse function using a small number of samples. Our framework combines Markov chain Monte Carlo methods with kernel density estimation algorithms to build a nonparametric importance sampling distribution, which can then be used to produce a lower-variance estimate of the recourse function. We demonstrate the increased accuracy and efficiency of our approach using variants of well-known multistage stochastic programming problems. Our numerical results show that our framework produces more accurate estimates of the optimal value of stochastic programming models, especially for problems with moderate variance, multimodal, or rare-event distributions.
引用
收藏
页码:358 / 377
页数:20
相关论文
共 50 条
  • [21] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [22] ON THE OPTIMAL TRANSITION MATRIX FOR MARKOV CHAIN MONTE CARLO SAMPLING
    Chen, Ting-Li
    Chen, Wei-Kuo
    Hwang, Chii-Ruey
    Pai, Hui-Ming
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) : 2743 - 2762
  • [23] A simple introduction to Markov Chain Monte-Carlo sampling
    van Ravenzwaaij, Don
    Cassey, Pete
    Brown, Scott D.
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 143 - 154
  • [24] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74
  • [25] Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆
    Hunt-Smith, N. T.
    Melnitchouk, W.
    Ringer, F.
    Sato, N.
    Thomas, A. W.
    White, M. J.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 296
  • [26] Markov chain Monte Carlo on optimal adaptive sampling selections
    Chao, CT
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2003, 10 (01) : 129 - 151
  • [27] Markov Chain Monte Carlo on optimal adaptive sampling selections
    Chang-Tai Chao
    [J]. Environmental and Ecological Statistics, 2003, 10 : 129 - 151
  • [28] Adaptive Markov chain Monte Carlo sampling and estimation in Mata
    Baker, Matthew J.
    [J]. STATA JOURNAL, 2014, 14 (03): : 623 - 661
  • [29] Markov Chain Monte Carlo Algorithms for Lattice Gaussian Sampling
    Wang, Zheng
    Ling, Cong
    Hanrot, Guillaume
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 1489 - 1493
  • [30] Border Sampling Through Coupling Markov Chain Monte Carlo
    Li, Guichong
    Japkowicz, Nathalie
    Stocki, Trevor J.
    Ungar, R. Kurt
    [J]. ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 393 - +