A simple introduction to Markov Chain Monte-Carlo sampling

被引:338
|
作者
van Ravenzwaaij, Don [1 ,2 ]
Cassey, Pete [2 ]
Brown, Scott D. [2 ]
机构
[1] Univ Groningen, Dept Psychol, Grote Kruisstr 2-1,Heymans Bldg,Room H169, NL-9712 TS Groningen, Netherlands
[2] Univ Newcastle, Dept Psychol, Univ Dr,Aviat Bldg, Callaghan, NSW 2308, Australia
关键词
Markov Chain Monte-Carlo; MCMC; Bayesian inference; Tutorial; GIBBS SAMPLER; MODEL; MEMORY; CHOICE;
D O I
10.3758/s13423-016-1015-8
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
Markov Chain Monte-Carlo (MCMC) is an increasingly popular method for obtaining information about distributions, especially for estimating posterior distributions in Bayesian inference. This article provides a very basic introduction to MCMC sampling. It describes what MCMC is, and what it can be used for, with simple illustrative examples. Highlighted are some of the benefits and limitations of MCMC sampling, as well as different approaches to circumventing the limitations most likely to trouble cognitive scientists.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 50 条
  • [1] A simple introduction to Markov Chain Monte–Carlo sampling
    Don van Ravenzwaaij
    Pete Cassey
    Scott D. Brown
    [J]. Psychonomic Bulletin & Review, 2018, 25 : 143 - 154
  • [2] MONTE-CARLO AND MARKOV-CHAIN TECHNIQUES FOR NETWORK RELIABILITY AND SAMPLING
    BUCHSBAUM, AL
    MIHAIL, M
    [J]. NETWORKS, 1995, 25 (03) : 117 - 130
  • [3] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05): : 341 - 348
  • [4] OPTIMUM MONTE-CARLO SAMPLING USING MARKOV CHAINS
    PESKUN, PH
    [J]. BIOMETRIKA, 1973, 60 (03) : 607 - 612
  • [5] An introduction to Markov chain Monte Carlo methods
    Besag, J
    [J]. MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [6] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    [J]. AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [7] Markov Chain Monte Carlo: an introduction for epidemiologists
    Hamra, Ghassan
    MacLehose, Richard
    Richardson, David
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (02) : 627 - 634
  • [8] Markov Chain Monte-Carlo Models of Starburst Clusters
    Melnick, Jorge
    [J]. NEW WINDOWS ON MASSIVE STARS: ASTEROSEISMOLOGY, INTERFEROMETRY AND SPECTROPOLARIMETRY, 2014, 307 : 123 - 124
  • [9] Regression without truth with Markov chain Monte-Carlo
    Madan, Hennadii
    Pernus, Franjo
    Likar, Bostjan
    Spiclin, Ziga
    [J]. MEDICAL IMAGING 2017: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT, 2017, 10136
  • [10] Convergence of concurrent Markov chain Monte-Carlo algorithms
    Malfait, M
    Roose, D
    [J]. CONCURRENCY-PRACTICE AND EXPERIENCE, 1996, 8 (03): : 167 - 189