A simple introduction to Markov Chain Monte–Carlo sampling

被引:0
|
作者
Don van Ravenzwaaij
Pete Cassey
Scott D. Brown
机构
[1] University of Groningen,Department of Psychology
[2] University of Newcastle,Department of Psychology
来源
关键词
Markov Chain Monte–Carlo; MCMC; Bayesian inference; Tutorial;
D O I
暂无
中图分类号
学科分类号
摘要
Markov Chain Monte–Carlo (MCMC) is an increasingly popular method for obtaining information about distributions, especially for estimating posterior distributions in Bayesian inference. This article provides a very basic introduction to MCMC sampling. It describes what MCMC is, and what it can be used for, with simple illustrative examples. Highlighted are some of the benefits and limitations of MCMC sampling, as well as different approaches to circumventing the limitations most likely to trouble cognitive scientists.
引用
收藏
页码:143 / 154
页数:11
相关论文
共 50 条
  • [1] A simple introduction to Markov Chain Monte-Carlo sampling
    van Ravenzwaaij, Don
    Cassey, Pete
    Brown, Scott D.
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 143 - 154
  • [2] Optimal Markov chain Monte Carlo sampling
    Chen, Ting-Li
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05) : 341 - 348
  • [3] An introduction to Markov chain Monte Carlo methods
    Besag, J
    [J]. MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [4] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    [J]. AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [5] Markov Chain Monte Carlo: an introduction for epidemiologists
    Hamra, Ghassan
    MacLehose, Richard
    Richardson, David
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (02) : 627 - 634
  • [6] Markov Chain Monte Carlo sampling on multilocus genotypes
    Szydlowski, M.
    [J]. JOURNAL OF ANIMAL AND FEED SCIENCES, 2006, 15 (04): : 685 - 694
  • [7] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    [J]. Resonance, 2003, 8 (4) : 17 - 26
  • [8] Respondent-driven sampling as Markov chain Monte Carlo
    Goel, Sharad
    Salganik, Matthew J.
    [J]. STATISTICS IN MEDICINE, 2009, 28 (17) : 2202 - 2229
  • [9] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    [J]. MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [10] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74