Optimal Markov chain Monte Carlo sampling

被引:1
|
作者
Chen, Ting-Li [1 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
关键词
Markov chain Monte Carlo; Metropolis-Hastings algorithm; Gibbs sampler; asymptotic variance; optimization;
D O I
10.1002/wics.1265
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article is a review article on the optimal Markov chain Monte Carlo (MCMC) sampling. The focus is on homogeneous Markov chains. This article first reviews the problem of finding the optimal transition matrix, which is defined to minimize the asymptotic variance of MCMC estimators. The article later reviews the locally optimal sampler (LOS), an MCMC sampling that performs local updates based on the optimal transition matrix. We conducted a simulation study to compare the LOS with the Metropolis-Hastings and the Gibbs Sampler. The LOS was shown to provide an improved rate of convergence over these two most popular sampling schemes. The implementation of the LOS requires only minor modifications in existing Gibbs sampling code. (C) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:341 / 348
页数:8
相关论文
共 50 条
  • [1] ON THE OPTIMAL TRANSITION MATRIX FOR MARKOV CHAIN MONTE CARLO SAMPLING
    Chen, Ting-Li
    Chen, Wei-Kuo
    Hwang, Chii-Ruey
    Pai, Hui-Ming
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (05) : 2743 - 2762
  • [2] Markov Chain Monte Carlo on optimal adaptive sampling selections
    Chang-Tai Chao
    Environmental and Ecological Statistics, 2003, 10 : 129 - 151
  • [3] Markov chain Monte Carlo on optimal adaptive sampling selections
    Chao, CT
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2003, 10 (01) : 129 - 151
  • [4] Markov Chain Monte Carlo sampling on multilocus genotypes
    Szydlowski, M.
    JOURNAL OF ANIMAL AND FEED SCIENCES, 2006, 15 (04): : 685 - 694
  • [5] A simple introduction to Markov Chain Monte–Carlo sampling
    Don van Ravenzwaaij
    Pete Cassey
    Scott D. Brown
    Psychonomic Bulletin & Review, 2018, 25 : 143 - 154
  • [6] OPTIMAL VARIANCE REDUCTION FOR MARKOV CHAIN MONTE CARLO
    Huang, Lu-Jing
    Liao, Yin-Ting
    Chen, Ting-Li
    Hwang, Chii-Ruey
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (04) : 2977 - 2996
  • [7] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [8] Respondent-driven sampling as Markov chain Monte Carlo
    Goel, Sharad
    Salganik, Matthew J.
    STATISTICS IN MEDICINE, 2009, 28 (17) : 2202 - 2229
  • [9] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74
  • [10] A simple introduction to Markov Chain Monte-Carlo sampling
    van Ravenzwaaij, Don
    Cassey, Pete
    Brown, Scott D.
    PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 143 - 154